Speed Light Photography

Speed Light Photography – part 1

First things first, apologies for the gap in blog entries – I’ve been a bit “in absentia” of late for one reason or another.  I’ve got a few gear reviews to do between now and the end of the year, video tutorial ideas and requests are crawling out of the woodwork, and my ability to organise myself has become something of a crumbling edifice!

I blame the wife myself………………..

But I’ve come to the conclusion that for one reason or another I’ve become somewhat pigeon-holed as a wildlife/natural history photographer – going under the moniker of Wildlife in Pixels it’s hardly a big surprise is it..

But I cut my photographic teeth on studio product/pack shot and still life work – I loved it then and I still do.  And there’s NOTHING that teaches you more about light than studio work – it pays dividends in all aspects of photography, wildlife and landscape work are no exception.  Understanding how light behaves, when it’ll look good and when it’ll look like a bag of spanners is what helps capture mood and atmosphere in a shot.

The interaction between light and subject is what makes a great image, and I do wish photographers would understand this – sadly most don’t.

To this end I’ve begun to teach workshops that try to give those attending a flavor of the basic concepts of light by introducing them to the idea of using their speed lights to produce images they can do 365 days a year cum rain or shine – high speed flash, and simple product still life.

Both styles demand a high level of attention to detail in the way the light produced by the speed lights bends and wraps around the subject.  Full-blown studio lights have the benefit of modelling lights so that you can see this before you take the shot, but using speed lights means you have to imagine what the light is doing, so it’s level of difficulty begins high, but decreases with practical experience.

A basic 3 light setup with speed lights can produce some really soft and moody lighting with ease.

A basic 4 light setup with speed lights can produce some really soft and moody lighting with ease.

This Black Label shot went a bit bonkers in the final stages with the addition of smoke, but it gives you an idea of the subtlety of lighting that can be achieved with speed lights.

As for the setup, here’s a shot before I introduced the glass….

Simple setup for the Black Label shot - note the well-appointed studio!

Simple setup for the Black Label shot – note the well-appointed studio!

…featuring that most valuable of studio photographers tools, the Voice Activated Light Stand..!

Four SB800’s in all, the one on the right is running at 1/2 power and is fitted with an Interfit Strobies softbox and is double diffused using a Calumet 42″ frame (available here) and white diffuser – this constitutes the main light.

Just look at the size of the diffused disc on the face of that 42″ frame – all that from a poxy 2″x1″ flash head in less than 16″ – epic!

The SB800 on the left, fitted with another softbox is turned down to 1/64th power, and is there solely to illuminate the label where it wraps around the left edge of the bottle, and to get a second neck highlight. Although their is light emanating from it, its greatest effect is that of “bouncing” light from the right hand source back in to the bottle.

The V.A.L.S. is fitted with a third speed light that has a diffused snoot – note the expensive diffusion material and the highly engineered attachment method – kitchen towel and rubber band!  The sole purpose of this tiny soft light is to just help pull out the left side of the bottle cap from the intensely dark background towards the top of the shot.

The 4th SB800 is fitted with a 30 degree honeycomb and a “tits ‘n ass”; or TNA2 to be more correct; filter just to give a subtle warm graduation to the background.

Speaking of the background, this is a roll of high grade tracing paper – one of the most versatile materials any studio has, both as a front lit or back lit background, or as a diffusion material – just brilliant stuff, second only to Translum plastic, and a shed-load cheaper.

At the other end of the speed light photography spectrum is the most enjoyable and fascinating pastime of high speed liquid motion photography – a posh way of saying “making a mess”!

It doesn’t have to be too messy – just don’t do it on your best Axminster!

By utilising the IGBT (Isolated Gate Bipolar Transistor) circuitry given to us in speed lights we can deploy the very fast tube burn times, or flash durations, obtained at lower output power settings to our advantage.

Simple shots of water, both dyed and clear can produce some stunning captures:

Streams of water captured back lit against a white background illuminated by two speed lights.

Streams of water captured back lit against a white background illuminated by two speed lights.

The background for this shot (above) is an A1 sized sheet of white foam board illuminated by a pair of SB910s.  The internal reflector angle is set to 35mm and the two speed lights are placed on stands about three feet from the background, just out of shot left and right, and aimed pretty much at the center of the board to facilitate a fairly even spread of light.

The power output settings for both speed lights is set to 1/16th which gives us 1/10,000th of a second flash duration.

Switching to tracing paper as a back lit background immediately puts us at a disadvantage in that it’ll cut the amount of light we see at the camera. But a back lit background always looks just that little bit better as it makes your lighting more easy to shape and control.

Doubling the speed light count behind the trace background to 4 now gives us the power in terms of guide number equal to your average studio light – but with full IGBT advantages.

Working a little closer to the background than we were with the white board/reflected light method we can very easily generate a smooth white field of 255RGB which will make our liquid splash shots really punchy:

Working about 3 feet from a translucent background illuminated by 4 SB800's gives us a much flatter white background, especially when deploying a 150mm or 180mm macro lens.

Working about 3 feet from a translucent background illuminated by 4 SB800’s gives us a much flatter white background, especially when deploying a 150mm or 180mm macro lens.

Shot with a 180mm macro lens at ISO 260 and f16 we have bags of depth of field on this shot.

Using 4x SB800s we can dial in the correct background exposure using the flash output power and camera ISO – we want a background that’s just on the verge of “blinkies”.  If we over expose too much for the background the light will wrap around the liquid edges too much, washing out the contrast and flaring – that’s something that muppet on Adorama TV doesn’t tell you!

Take a few shots holding the glass by the rim gives us a clean foot to the glass, so we can now go and make a nice composite in Photoshop:

Composite of a couple of splash shots and a couple of "clean foot" images....

Composite of a couple of splash shots and a couple of “clean foot” images….

Happy sodding Valentines day for next year everyone……..yuck, but it’ll sell all day bloomin’ long!

A while ago I posted an entry on this blog about doing splash shots using a method I call “long flash short shutter” HERE.

All the shots on this entry have been taken using the “short flash long shutter” method.

This latter method is the more versatile one of the two because it has a more effective “motion freezing” power; the former method being speed-limited by the 1/8000th shutter speed – and it’s more costly on batteries!

BUT………there’s always one of those isn’t there…?

Short flash long shutter utilises the maximum X-synch speed or the camera.  This is the fastest speed we can use where the sensor is FULLY open, and it’s most commonly 1/250th sec.

Sussed the massive potential pitfall yet?

That’s right – AMBIENT LIGHT.

If any ambient light reaches the sensor during our 1/250th sec exposure time then WE WILL GET MOTION BLUR that will visually amount to the same sort of effect as slow synch, sharp image with under exposed blur trails.

So we need to make sure that the ambient light is low enough to render a totally black frame.

The “long flash short shutter” method works well in conditions of high ambient provided that the action can be frozen in 1/8000th sec.  If your camera only does 1/4000th sec then the method becomes somewhat less useful.

Freezing action depends on a number of things:

  • 1. Is the subject falling under gravity or rising against it?
  • 2. How far away is the subject?

A body falling under gravity is doing around 10mph after it’s fallen 2 feet from a dead start, and a car doing 100mph looks a lot slower when it’s 200 yards down the road than it does when it’s 20 yards away.

Similarly, if we have a cascade of liquid falling under gravity through the frame of our camera and (to avoid the jug or pouring vessel) the liquid has fallen 6 inches when it enters the top of the frame, and 30 inches when it vacates the bottom of the frame; we have to take a few things into consideration.

  • The liquid is faster at the bottom of the frame than at the top – think Angel Falls – the water pulls itself apart (that’s why the images can look so amazing).
  • If we shoot close with a short lens the speed differential across the frame will be the same BUT the overall speed will be a little more apparent than if we shoot with a longer lens from further away.

An SB910 has a 1/16th power output duration of 1/10000th sec and an SB800 1/10,900th at the same output setting (OEM-quoted values). With a 70mm lens close up this can make a subtle difference in image sharpness, but fit a 180mm and move further away from the subject to maintain composition, and the difference is non-existent.

If you are throwing liquid upwards against gravity, then it’s slowing down, and will eventually stop before falling back under the effects of gravity – quite often, 1/8000th is sufficient to freeze this sort of motion.

Both “long shutter short flash” and “short shutter long flash” are valid methods, each with their own pluses and minuses; but the method I always recommend people start with is the former “long shutter” method – it’s easier!

When a shot features a glass remember one thing – drinking glasses were invented by a race of photographer-hating beings! Glasses transmit, reflect and refract light through a full 360 degrees and you can really end up chasing your tail trying to find the source of an errant reflection if you don’t go about lighting it in the correct manner.

And if you put liquid in it then things can get a whole lot worse!

I’ll be doing some very specific workshops with Calumet in the near future that will be all about lighting glass and metal, gloss and matte surfaces, so keep your eye open if this sort of thing interests you – IT SHOULD ‘cos it’ll make you a better photographer….!

The simplest “proper” glass lighting method is what we call “bright field illumination” and guess what – that’s the method used in all the above liquid shots.

Glass Photography - Bright Field & Dark Field illumination.

Glass Photography – Bright Field & Dark Field illumination.

In the image above, I’ve photographed the same glass using the two ancient and venerable methods of glass photography – one is easy, the other a total pain in the ass; guess which is which!

I’m not going to go into this in detail here, that’ll be in a later post; but BRIGHT FIELD defines the outline of the glass with DARK lines, and DARK FIELD defines the glass white lines of WHITE or highlight.

If you guessed DARK FIELD is the pain the bum then you were right – you will see bits of your “studio” reflected in the glass you didn’t even know existed unless you get this absolutely spot on and 100% correct.

The nice thing about studio-style photography is that you have thinking time, without pressure from working with people, animals or weather and a constantly moving sun. You can start to work up a shot and then leave it over night, when you come back the next day and click the shutter everything is as you left it – unless you’ve had burglars.

You do develop a habit of needing more “grips” gear – you’ve NEVER got the right bit! But then again it’s far cheaper than the bad habit of tripod accumulation like my friend Malc is afflicted with!

Later Folks!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Brilliant Papers from Calumet

Brilliant Papers from Calumet

My thoughts on two papers from the Calumet Brilliant Papers range.

Brilliant Museum Printing Papers from Calumet,printing,brilliant papers,Calumet,desktop printing,printer papers,Andy Astbury

Brilliant Museum Printing Papers from Calumet

As I CONSTANTLY demonstrate to individuals and groups during workshops and 1to1 tuition days, printing is so damned easy it’s ridiculous.  Provided you get all your “ducks in a row” – and that’s not the hardest thing in the world to do, considering you’ve only got 3 bloody ducks!

How hard can it be???

Notwithstanding the necessity for an accurate monitor profile (duck number 1), the paper and its profile, or colour space if you like, form the back-bone of both “soft-proof” and the final print that spews forth from your printer – they’re ducks 2 and 3 respectively.

When getting someone on the “straight and narrow path to print righteousness” I always find it best practice to make them stick to one paper until they are super-familiar with the process, and begin to appreciate the fact that paper choice is the final step in the creative process.

I never want to confuse folk with custom profiles either – if I can get them onto a paper that comes supplied with a reliable OEM profile which includes the relevant MEDIA SETTINGS for the printer (these are crucial) then my work is done.

One paper with a very accurate OEM profile that has media settings as part of the profile name is Permajet Oyster 271.  A cracking paper for general purpose printing, it’s finish suits most images, and it’s still my go-to paper for prints of general wildlife and natural history subjects.

But it doesn’t suit everything, and landscapes, seascapes, and other styles of fine art imagery are the sorts of images that spring to mind.  It’s paper-white is a little on the cool side for starters – so printing a warm tone image to it increases your soft-proof workload for starters.

So I’m always trying different papers so that I can recommend them to my clients,  but no matter how good I find them, I’ll rarely recommend them if the supplied OEM profile is crap.  With the profiling gear I use I could get a workable custom profile for toilet paper if I had to, but telling someone new to printing that they need to:

  • Spend £1500 on the gear
  • Learn how to use what looks like the most scary software GUI on the planet
  • Waste 1 or 2 sheets of paper and ink printing the test charts (it’s not a waste really but that’s how they’d see it).

isn’t a real option.

But now I’m in love with two papers from Calumet and their Brilliant Papers Museum range.  They are:

  • Brilliant Papers Museum Satin Matte Natural
  • Brilliant Museum Printing Papers from Calumet,printing,brilliant papers,Calumet,desktop printing,printer papers,Andy Astbury

    Brilliant Papers Museum Inkjet Paper – Satin Matte Natural

  • Brilliant Papers Museum Silver Gloss Natural
  • Brilliant Museum Printing Papers from Calumet,printing,brilliant papers,Calumet,desktop printing,printer papers,Andy Astbury

    Brilliant Papers Museum Inkjet Paper – SilverGloss Natural

 

Both these papers, in my opinion, are up there with the very best of them.  And, while they cost – size for size – twice as much as something like Permajet Oyster; they are both far more than twice as beneficial to the easy production of fine art landscapes and other images that require a bit more from the printer paper to add the final touch.

I’ve used both papers on the Epson R3000 with the Epson ink set, and on my Epson 4800 that carries a Lyson ink set, and all I can say is that I’m more than impressed, and have no trouble in recommending you give them a go.

On the Epson R3000 I used the “canned profiles” downloadable from Brilliant Papers website HERE  but you need to understand that Brilliant have not exactly been sensible here and have omitted to give you any indication of correct media settings.

I’ve actually been using media settings of WCRW (water colour radiant white) for the Satin Matte Natural on the R3000 and TFAP (textured fine art paper) on the 4800.

For the Silver Gloss Natural the media settings for both printers have been UPPPL (ultra premium photo paper lustre) and results have been superb.

Just in case you don’t understand why media settings need to be set correctly, different papers require, amongst other things, different inking levels from the print head – too much ink and the print will look dark, too little and it’ll look pale and washed out.  There is also the little matter of what’s called “dot gain”.  Some papers have a hard glossy surface, others a more rough and porous one. A nozzle droplet of a particular size might be fine on a gloss paper, but that same size droplet on a fine art rag paper might well ‘bleed’ and spread out like it was on blotting paper.  This bleeding, or dot gain, leads to a reduction in sharpness of fine detail.

So, media settings are important – they ain’t there for the hell of it you know!

The “canned” profiles plot for the Epson R3000 using MK ink for Satin Matte Natural and PK ink for the Silver Gloss Natural (sRGB included for comparison):

Brilliant Museum Printing Papers from Calumet,printing,brilliant papers,Calumet,desktop printing,printer papers,Andy Astbury

Click to enlarge

And for the 4800:

Brilliant Museum Printing Papers from Calumet,printing,brilliant papers,Calumet,desktop printing,printer papers,Andy Astbury

Click to enlarge

I swapped the plot colours around by mistake – my bad!

I always used to like the look of images printed on Permajets Fine Art Museum 310, but 90% of the time I felt the texture somehow visually ‘got in the way’.

The texture of Brilliant Papers Museum Satin Matte Natural is not quite so pronounced which means I like it better!

In practical terms the colour space of the paper, though ever so slightly smaller than the Permajet Museum paper, does give you slightly deeper blacks and that tiny bit of extra shadow detail clarity.  All in all, a very good go-to paper, especially for the more monochromatic image such as:

printing,brilliant papers,Calumet,desktop printing,printer papers,Andy Astbury

“The Portal”

The Brilliant Papers Silver Gloss Natural.  I find it difficult to actually describe the finish as “gloss” – it’s more like a very fine grained lustre to be honest.

And the difference between the two papers?  Well, the Silver Gloss just has that little extra contrast in the medium and darker midtones – it’s a bit like adding 8 or 10 points of clarity to an image inside of the Lightroom Dev module.  I’d definitely consider this a great paper for landscape and fine art imagery that contains just that little bit more in terms of colour variation and saturation:

printing,brilliant papers,Calumet,desktop printing,printer papers,Andy Astbury

“Stepping Stones to Oblivion”

All in all two very nice papers from the Brilliant Papers range that will be seeing regular use both in my own work, and in my workshops and tuition days; though not exactly budget-priced papers they’re no where near as pricey as some – plus, don’t you think your images are worth it?

And just in case you were wondering; I too was quite surprised at just how well matched the Brilliant canned profiles for the 4800 worked out on my Lyson ink set! I’ve written custom profiles for both of these papers, and there is generally so little difference between the custom and Brilliant profiles (which are really intended for the Epson ink set) that I can’t tell the difference between the prints I’ve done so far – and I’ve done a few!

Though for my own printing I’ll always use my custom icc profiles.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Desktop Printing 101

Understanding Desktop Printing – part 1

 

desktop printingDesktop printing is what all photographers should be doing.

Holding a finished print of your epic image is the final part of the photographic process, and should be enjoyed by everyone who owns a camera and loves their photography.

But desktop printing has a “bad rap” amongst the general hobby photography community – a process full of cost, danger, confusion and disappointment.

Yet there is no need for it to be this way.

Desktop printing is not a black art full of ‘ju-ju men’ and bear-traps  – indeed it’s exactly the opposite.

But if you refuse to take on board a few simple basics then you’ll be swinging in the wind and burning money for ever.

Now I’ve already spoken at length on the importance of monitor calibration & monitor profiling on this blog HERE and HERE so we’ll take that as a given.

But in this post I want to look at the basic material we use for printing – paper media.

Print Media

A while back I wrote a piece entitled “How White is Paper White” – it might be worth you looking at this if you’ve not already done so.

Over the course of most of my blog posts you’ll have noticed a recurring undertone of contrast needs controlling.

Contrast is all about the relationship between blacks and whites in our images, and the tonal separation between them.

This is where we, as digital photographers, can begin to run into problems.

We work on our images via a calibrated monitor, normally calibrated to a gamma of 2.2 and a D65 white point.  Modern monitors can readily display true black and true white (Lab 0 to Lab 100/RGB 0 to 255 in 8 bit terms).

Our big problem lies in the fact that you can print NEITHER of these luminosity values in any of the printer channels – the paper just will not allow it.

A papers ability to reproduce white is obviously limited to the brightness and background colour tint of the paper itself – there is no such think as ‘white’ paper.

But a papers ability to render ‘black’ is the other vitally important consideration – and it comes as a major shock to a lot of photographers.

Let’s take 3 commonly used Permajet papers as examples:

  • Permajet Gloss 271
  • Permajet Oyster 271
  • Permajet Portrait White 285

The following measurements have been made with a ColorMunki Photo & Colour Picker software.

L* values are the luminosity values in the L*ab colour space where 0 = pure black (0RGB) and 100 = pure white (255RGB)

Gloss paper:

  • Black/Dmax = 4.4 L* or 14,16,15 in 8 bit RGB terms
  • White/Dmin = 94.4 L* or 235,241,241 (paper white)

From these measurements we can see that the deepest black we can reproduce has an average 8bit RGB value of 15 – not zero.

We can also see that “paper white” has a leaning towards cyan due to the higher 241 green & blue RGB values, and this carries over to the blacks which are 6 points deficient in red.

Oyster paper:

  • Black/Dmax = 4.7 L* or 15,17,16 in 8 bit RGB terms
  • White/Dmin = 94.9 L* or 237,242,241 (paper white)

We can see that the Oyster maximum black value is slightly lighter than the Gloss paper (L* values reflect are far better accuracy than 8 bit RGB values).

We can also see that the paper has a slightly brighter white value.

Portrait White Matte paper:

  • Black/Dmax = 25.8 L* or 59,62,61 in 8 bit RGB terms
  • White/Dmin = 97.1 L* or 247,247,244 (paper white)

You can see that paper white is brighter than either Gloss or Oyster.

The paper white is also deficient in blue, but the Dmax black is deficient in red.

It’s quite common to find this skewed cool/warm split between dark tones and light tones when printing, and sometimes it can be the other way around.

And if you don’t think there’s much of a difference between 247,247,244 & 247,247,247 you’d be wrong!

The image below (though exaggerated slightly due to jpeg compression) effectively shows the difference – 247 neutral being at the bottom.

paper white,printing

247,247,244 (top) and 247,247,247 (below) – slightly exaggerated by jpeg compression.

See how much ‘warmer’ the top of the square is?

But the real shocker is the black or Dmax value:

paper,printing,desktop printing

Portrait White matte finish paper plotted against wireframe sRGB on L*ab axes.

The wireframe above is the sRGB colour space plotted on the L*ab axes; the shaded volume is the profile for Portrait White.  The sRGB profile has a maximum black density of 0RGB and so reaches the bottom of vertical L axis.

However, that 25.8 L* value of the matte finish paper has a huge ‘gap’ underneath it.

The higher the black L* value the larger is the gap.

What does this gap mean for our desktop printing output?

It’s simple – any tones in our image that are DARKER, or have a lower L* value than the Dmax of the destination media will be crushed into “paper black” – so any shadow detail will be lost.

Equally the same can be said for gaps at the top of the L* axis where “paper white” or Dmin is lower than the L* value of the brightest tones in our image – they too will get homogenized into the all-encompassing paper white!

Imagine we’ve just processed an image that makes maximum use of our monitors display gamut in terms of luminosity – it looks magnificent, and will no doubt look equally as such for any form of electronic/digital distribution.

But if we send this image straight to a printer it’ll look really disappointing, if only for the reasons mentioned above – because basically the image will NOT fit on the paper in terms of contrast and tonal distribution, let alone colour fidelity.
It’s at this point where everyone gives up the idea of desktop printing:

  • It looks like crap
  • It’s a waste of time
  • I don’t know what’s happened.
  • I don’t understand what’s gone wrong

Well, in response to the latter, now you do!

But do we have to worry about all this tech stuff ?

No, we don’t have to WORRY about it – that’s what a colour managed work flow & soft proofing is for.

But it never hurts to UNDERSTAND things, otherwise you just end up in a “monkey see monkey do” situation.

And that’s as dangerous as it can get – change just one thing and you’re in trouble!

But if you can ‘get the point’ of this post then believe me you are well on your way to understanding desktop printing and the simple processes we need to go through to ensure accurate and realistic prints every time we hit the PRINT button.

desktop printing

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.