Lee SW150 Mk2 Filter Holder – Review

The Lee SW150 Mk2 Filter Holder

PURE SEX - and I've bloody well paid for this! My new SW150 MkII filter system for the Nikon 14-24. Just look at those flashy red anodised parts - bound to make me a better photographer!

PURE SEX – and I’ve bloody well paid for this! My new SW150 MkII filter system for the Nikon 14-24. Just look at those flashy red anodised parts – bound to make me a better photographer!

I’ve just finished part 1 of my video review of the Lee SW150 Filter holder system for super-wide lenses and uploaded it to my YouTube channel:

First off – please forgive the shirt folks!

The SW150 Mk 2 filter holder is designed to fit a list of different lenses:

  1. Nikon AF-S Nikkor 14-24mm f/2.8G ED

  2. Nikon 14mm f2.8 D AF ED

  3. Canon EF 14mm f2.8 L II USM

  4. Samyang 14mm f/2.8 ED AS IF UMC

  5. Sigma 12-24mm f4.5-5.6 DG HSM II

  6. Tokina AT-X 16-28mm f/2.8 PRO FX

and according to the Lee website, additional lenses will be catered for; as the need arises I presume.

I never subscribed to the original incarnation of the SW150, for two reasons:

  • It ‘leaked light’ at the rear surface of the filter (though that was fairly easy to correct with a home-made baffle mod).

But that was of no consequence to me because Lee always gave the impression that:

  • They would not produce the Big & Little Stopper filters in 150mm square format.

So I’ve always stuck with either the 100mm Lee system or used a B&W 77mm screw-in filter on the Nikon 24-70mm f2.8 or a wide angle prime; and I’ve shot many a well-selling image.

nik14-24_24-70

But, the Nikon 14-24mm f2.8 lens has more than one advantage over its sister lens:

  1. It’s sharper – by a country mile.
  2. It resolves more ‘line pairs per millimetre’ than the 24-70mm.
  3. Its focal length range is more ‘in keeping’ with landscape photography.

And, like all the other lenses in that list above, that vast front element collects SO MANY MORE photons during the exposure.

So, now that I’ve got the opportunity to use the advantages of the 14-24 f2.8 from behind high quality 10x and 6x ND filters – well, let’s say the purchase of the Lee SW150 Mk2 system is a bit of a ‘no-brainer’ really.

The main improvement to the holder itself is the inclusion of a new baffle or ‘lightshield’ as Lee call it – this can be purchased separately as an upgrade to the original Lee SW150 Mk 1.

But you’ll have to do without the sexy red anodised bits that come with the new Mk 2 version if you go that route – these have just got to make me a better photographer!

Part 2 of the video review is here https://www.youtube.com/watch?v=-0AkHV8RsDw&t=3s

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

HDR in Lightroom CC (2015)

Lightroom CC (2015) – exciting stuff!

New direct HDR MERGE for bracketed exposure sequences inside the Develop Module of Lightroom CC 2015 – nice one Adobe!  I can see Eric Chan’s finger-prints all over this one…!

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Twilight at Porth Y Post, Anglesey.

After a less than exciting 90 minutes on the phone with Adobe this vary morning – that’s about 10 minutes of actual conversation and an eternity of crappy ‘Muzak’ – I’ve managed to switch from my expensive old single app PsCC subscription to the Photography Plan – yay!

They wouldn’t let me upgrade my old stand-alone Lr4/Lr5 to Lr6 ‘on the cheap’ so now they’ve given me two apps for half the price I was paying for 1 – mental people, but I’ll not be arguing!

I was really eager to try out the new internal ‘Merge’ script/command for HDR sequences – and boy am I impressed.

I picked a twilight seascape scene I shot last year:

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

I’ve taken a 6 shot exposure bracketed sequence of RAW files above, into the Develop Module of Lightroom CC and done 3 simple adjustments to all 6 under Auto Synch:

  1. Change camera profile from Adobe Standard to Camera Neutral.
  2. ‘Tick’ Remove Chromatic Aberration in the Lens Corrections panel.
  3. Change the colour temperature from ‘as shot’ to a whopping 13,400K – this neutralises the huge ‘twilight’ blue cast.

You have to remember that NOT ALL adjustments you can make in the Develop Module will carry over in this process, but these 3 will.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Ever since Lr4 came out we have had the ability to take a bracketed sequence in Lightroom and send them to Photoshop to produce what’s called a ’32 bit floating point TIFF’ file – HDR without any of the stupid ‘grunge effects’ so commonly associated with the more normal styles of HDR workflow.

The resulting TIFF file would then be brought back into Lightroom where some very fancy processing limits were given to us – namely the exposure latitude above all else.

‘Normal’ range images, be they RAW or TIFF etc, have a potential 10 stops of exposure adjustment, +5 to -5 stops, both in the Basics Panel, and with Linear and Radial graduated filters.

But 32 bit float TIFFs had a massive 20 stops of adjustment, +10 to -10 stops – making for some very fancy and highly flexible processing.

Now the, what’s a ‘better’ file type than pixel-based TIFF?  A RAW file……

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

So, after selecting the six RAW images, right-clicking and selecting ‘Photomerge>HDR’…

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

…and selecting ‘NONE’ from the ‘de-ghost’ options, I was amazed to find the resulting ‘merged file’ was a DNG – not a TIFF – yet it still carries the 20 stop exposure adjustment  latitude.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

This is the best news for ages, and grunge-free, ‘real-looking’ HDR workflow time has just been axed by at least 50%.  I can’t really say any more about it really, except that, IMHO of course, this is the best thing to happen for Adobe RAW workflow since the advent of PV2012 itself – BRILLIANT!

Note: Because all the shots in this sequence featured ‘blurred water’, applying any de-ghosting would be detrimental to the image, causing some some weird artefacts where water met static rocks etc.

But if you have image sequences that have moving objects in them you can select from 3 de-ghost pre-sets to try and combat the artefacts caused by them, and you can check the de-ghost overlay tick-box to pre-visualise the de-ghosting areas in the final image.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Switch up to Lightroom CC 2015 – it’s worth it for this facility alone.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

The ND Filter

Long Exposure & ND Filters

long exposure,slow shutter speed,ND filter,CMOS sensor,noise

A view of the stunning rock formations at Porth Y Post on the Welsh island of Anglesey. The image is a long exposure of very rough sea, giving the impression of smoke and fog.  30 seconds @f13 ISO 100. B&W 10stop ND – unfiltered exposure would have been 1/30th.

The reason for this particular post began last week when I was “cruising” a forum on a PoD site I’m a member of, and I came across a thread started by someone about heavy ND filters and very long exposures.

Then, a couple of days later a Facebook conversation cropped up where someone I know rather well seemed to be losing the plot over things totally by purchasing a 16 stop ND.

The poor bugger got a right mauling from “yours truly” for the simple reason that he doesn’t understand the SCIENCE behind the art of photography.  This is what pisses me off about digital photography – it readily provides “instant gratification” to folk who know bugger all about what they are doing with their equipment.  They then spend money on “pushing the envelope” only to find their ivory tower comes tumbling down around them because they THOUGHT they knew what they were doing………..stop ranting Andy before you have a coronary!

OK, I’ll stop “ranting”, but seriously folks, it doesn’t matter if you are on a 5DMkIII or a D800E, a D4 or a 1Dx – you have to realise that your camera works within a certain set of fixed parameters; and if you wander outside these boundaries for reasons of either stupidity or ignorance, then you’ll soon be up to your ass in Alligators!

Avid readers of this blog of mine (seemingly there are a few) will know that I’ve gone to great lengths in the past to explain how sensors are limited in different ways by things such as diffraction and that certain lens/sensor combinations are said to be “diffraction limited; well here’s something new to run up your flag pole – sensors can be thought of as being “photon limited” too!

I’ll explain what I mean in a minute…..

SENSOR TYPE

Most folk who own a camera of modern design by Nikon or Canon FAIL at the first hurdle by not understanding their sensor type.

Sensors generally fall into two basic types – CCD and CMOS.

Most of us use cameras fitted with CMOS sensors, because we demand accurate fast phase detection AF AND we demand high levels of ADC/BUFFER speed.  In VERY simplistic terms, CCD sensors cannot operate at the levels of speed and efficiency demanded by the general camera-buying public.

So, it’s CMOS to the rescue.  But CMOS sensors are generally noisier than CCDs.

When I say “noise” I’m NOT referring to the normal under exposure luminance noise that a some of you might be thinking of. I’m talking about the “background noise” of the sensor itself – see post HERE .

Now I’m going to over simplify things for you here – I need to because there are a lot of variables to take into account.

  • A Sensor is an ARRAY of PHOTOSITES or PHOTODIODES
  • A photodiode exists to do one thing – react to being struck by PHOTONS of light by producing electrons.
  • To produce electrons PROPORTIONAL to the number of photons that strike it.

Now in theory, a photodiode that sees ZERO photons during the exposure should release NO ELECTRONS.

At the end of the exposure the ADC comes along and counts the electrons for each photodiode – an ANALOGUE VALUE – and converts it to a DIGITAL VALUE and stores that digital value as a point of information in the RAW file.

A RAW converter such as Lightroom then reads all these individual points of information and using its own in-built algorithms it normalises and demosaics them into an RGB image that we can see on our monitor.

Sounds simple doesn’t it, and theoretically it is.  But in practice there’s a lot of places in the process where things can go sideways rapidly……..!

We make a lot of assumptions about our pride and joy – our newly purchased DSLR – and most of these assumptions are just plain wrong.  One that most folk get wrong is presuming ALL the photodiodes on their shiny new sensor BEHAVE IN THE SAME WAY and are 100% identical in response.  WRONG – even though, in theory, it should be true.

Some sensors are built to a budget, some to a standard of quality and bugger the budget.

Think of the above statement as a scale running left to right with crap sensors like a 7D or D5000 on the left, and the staggering Phase IQ260 on the right.  There isn’t, despite what sales bumph says, any 35mm format sensor that can come even close to residing on the right hand end of the scale, but perhaps a D800E might sit somewhere between 65 and 70%.

The thing I’m trying to get at here is that “quality control” and “budget” are opposites in the manufacturing process, and that linearity and uniformity of photodiode performance costs MONEY – and lots of it.

All our 35mm format sensors suffer from a lack of that expensive quality control in some form or other, but what manufacturers try to do is place the resulting poor performance “outside the envelope of normal expected operation” as a Nikon technician once told me.

In other words, during normal exposures and camera usage (is there such a thing?) the errors don’t show themselves – so you are oblivious to them. But move outside of that “envelope of normal expected operation” and as I said before, the Alligators are soon chomping on your butt cheeks.

REALITY

Long exposures in low light levels – those longer than 30 to 90 seconds – present us with one of those “outside the envelope” situations that can highlight some major discrepancies in individual photodiode performance and sensor uniformity.

Earlier, I said that a photodiode, in a perfect world, would always react proportionally to the number of photons striking it, and that if it had no photon strikes during the exposure then it would have ZERO output in terms of electrons produced.

Think of the “perfect” photodiode/photosite as being a child brought up by nuns, well mannered and perfectly behaved.

Then think of a child brought up in the Gallagher household a la “Shameless” – zero patience, no sense of right or wrong, rebellious and down right misbehaved.  We can compare this kid with some of the photodiodes on our sensor.

These odd photodiodes usually show a random distribution across the sensor surface, but you only ever see evidence of their existence when you shoot in the dark, or when executing very long exposures from behind a heavy ND filter.

These “naughty” photodiodes behave badly in numerous ways:

  • They can release a larger number of electrons than is proportional to their photon count.
  • They can go to the extreme of releasing electrons when the have a ZERO photon count.
  • They can mimic the output of their nearest neighbors.
  • They can be clustered together and produce random spurious specks of colour.

And the list goes on!

It’s a Question of Time

These errant little buggers basically misbehave because the combination of low photon count and overly long exposure time allow them to, if you like, run out of patience and start misbehaving.

It is quite common for a single photodiode or cluster of them to behave in a perfect manner for any shutter speed up to between 30 seconds and 2 minutes. But if we expose that same photodiode or cluster for 3 minutes it can show abnormal behavior in its electron output.  Expose it for 5 minutes and its output could be the same, or amplified, or even totally different.

IMPORTANT – do not confuse these with so-called “hot pixels” which show up in all exposures irrespective of shutter duration.

Putting an ND filter in front of your lens is the same as shooting under less light.  Its effect is even-handed across all exposure values in the scenes brightness range, and therein lies the problem.  Cutting 10 stops worth of photons from the highlights in the scene will still leave plenty to make the sensor work effectively in those areas of the image.

But cutting 10 stops worth of photons from the shadow areas – where there was perhaps 12 stops less to begin with – might well leave an insufficient number of photons in the very darkest areas to make those particular photodiodes function correctly.

Exposure is basically a function of Intensity and Time, back in my college days we used to say that Ex = I x T !

Our ND filter CUTS intensity across the board, so Time has to increase to avoid under exposure in general.  But because we are working with far fewer photons as a whole, we have to curb the length of the Time component BECAUSE OF the level of intensity reduction – we become caught in a “Catch 22” situation, trying to avoid the “time triggered” malfunction of those errant diodes.

Below is an 4 minute exposure from behind a Lee Big Stopper on a 1Dx – click on both images to open at full resolution in a new window.

long exposure,slow shutter speed,ND filter,CMOS sensor,noise

Canon 1Dx
4 minutes @ f13
ISO 200 Lee 10stop

long exposure,slow shutter speed,ND filter,CMOS sensor,noise

The beastly Nikon D800E fairs a lot better under similar exposure parameters, but there are still a lot of repairs to be done:

long exposure,slow shutter speed,ND filter,CMOS sensor,noise

A 4 minute exposure on a D800, f11 at 200ISO

Most people use heavy ND filters for the same reason I do – smoothing out water.

long exposure,slow shutter speed,ND filter,CMOS sensor,noise

The texture of the water in the top shot clutters the image and adds nothing – so get rid of it! D4,ISO 50, 30secs f11 Lee Big Stopper

Then we change the camera orientation and get a commercial shot:

long exposure,slow shutter speed,ND filter,CMOS sensor,noise

Cemlyn Bay on the northwest coast of Anglesey, North Wales, Approximately 2.5 km to the east is Wylfa nuclear power station. Same exposure as above.

In this next shot all I’m interested in is the jetty, neither water surface texture or horizon land add anything – the land is easy to dump in PShop but the water would be impossible:

long exposure,slow shutter speed,ND filter,CMOS sensor,noise

I see the bottom image in my head when I look at the scene top left. Again, the 10 stop ND fixes the water, which adds precisely nothing to the image. D4 ISO 50, 60 secs, f14 B&W 10 stop

The mistake folk make is this, 30 seconds is usually enough time to get the effect on the water you want, and 90 to 120 seconds is truly the maximum you should ever really need.  Any longer and you’ll get at best no more effect, and at worst the effect will not look as visually appealing – that’s my opinion anyway.

This time requirement dovetails nicely with the “operating inside the design envelope” physics of the average 35mm format sensor.

So, as I said before, we could go out on a bit of a limb and say that our sensors are all “photon limited”; all diodes on the sensor must be struck by x number of photons.

And we can regard them as being exposure length limited; all diodes on the sensor must be struck by x photons in y seconds in order to avoid the pitfalls mentioned.

So next time you have the idea of obtaining something really daft, such as the 16 stop ND filter my friend ordered, try engaging your brain.  An unfiltered exposure that meters out at 1/30th sec will be 30 seconds behind a 10 stop ND filter, and a whopping 32 minutes behind a 16 stop ND filter.  Now at that sort of exposure time the sensor noise in the image will be astonishing in both presence and variety!

As I posted on my Book of Face page the other day, just for kicks I shot this last Wednesday night:

long exposure,slow shutter speed,ND filter,CMOS sensor,noise

Penmon Lighthouse in North Wales at twilight.
Sky is 90 secs, foreground is 4 minutes, D4, f16, ISO 50 B&W 10 stop ND filter

The image truly gives the wrong impression of reality – the wind was cold and gusting to 30mph, and the sea looked very lumpy and just plain ugly.

I spent at least 45 minutes just taking the bloody speckled colour read noise out of the 4 minute foreground exposure – I have to wonder if the image was truly worth the effort in processing.

When you take into account everything I’ve mentioned so far plus the following:

  • Long exposures are prone to ground vibration and the effects of wind on the tripod etc
  • Hanging around in places like the last shot above is plain dangerous, especially when it’s dark.

you must now see that keeping the exposures as short as possible is the sensible course of action, and that for doing this sort of work a 6 stop ND filter is a more sensible addition to your armoury than a 16 stop ND filter!

Just keep away from exposures above 2 minutes.

And before anyone asks, NO – you don’t shoot star trails in one frame over 4 hours unless you’re a complete numpty!  And for anyone who thinks you can cancel noise by shooting a black frame think on this – the black frame has to be shot immediately after the image, and has to be the same exposure duration as the main image.  That means a 4 hour single frame star trail plus black frame to go with it will take at least 8 hours – will your camera battery last that long?  If it dies before the black frame is finished then you lose BOTH frames……………

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.