Nikon Z7 – I am a Bad Idea

Nikon Z7 – I am a Bad Idea and a waste of YOUR money!

Nikon Z7

And NO – this title isn’t meant as clickbait!

I love Nikon cameras for many reasons.

I HATE Nikon as a company.

I dislike Canon cameras for numerous technical and ergonomic reasons.

I LIKE Canon as a company.

The Nikon D5 was THE FIRST Nikon camera I’ve used that I dislike and thought was like the proverbial bag of spanners.

But now there’s a new Nikon that takes over the mantle of Nikon at its very worst – and I’ve not even clapped eyes on one yet let alone handled one.  I don’t need to play with one to know just how much of a rip-off this pile of rubbish really is.

This camera is £4000 at Wex here in the UK – yes, that FOUR THOUSAND of your hard-earned spondoolicks (for our overseas friends that’s ‘slang’ for pounds sterling).

We’ve already harangued the Z7 for its single media slot – and Canon followed suit with the EOS R, is that a coincidence?

But here’s the kicker, and the MAIN reason why the Nikon Z7 is a crock, and the indicator lies at the foot of page 57 in the Nikon Z7 user manual:

Nikon Z7

And for those with bad eyesight:

Nikon Z7

You can see/download the manual here: NIKON Z7 USER MANUAL

I think the first to show the AF problems with the Nikon Z7 was the ‘afro haircut idiot know-nothing from Philedelphia’ – you know, the guy who never knew how to use Photoshop until the other month when Matt Kloskowski showed him how – live on YouTube.

Lot’s of people are jumping on the DISS THE NIKON Z7 AF bandwagon as I’m typing this, but none of the morons are pointing out WHY the NIKON Z7 auto focus is so crappy.

So I will tell you why!!!!

There is no way to have any control finesse over the AF functionality.

Nikon Z7

Above is the main control functionality for the D5/500/850 MultiCAM 20K AF system.

You will see controls for Blocked Shot Response and Subject Motion.  These roughly equate to Tracking Sensitivity and Acceleration/Deceleration Tracking on the controls for the Canon 61 point Reticular system found on the likes of the 1DX Mk1 and Mk2 and 5DMk 3 and Mk4.

The two controls on both Nikon and Canon dictate the auto focus SOLUTION spat out by the PREDICTIVE AF ALGORITHMS contained in the cameras AF engine processors.

The subjects degree and type of motion RELATIVE to the camera position DEMAND different setups within this control panel.  It’s all to do with the camera AF resistance to MINOR and MAJOR changes in subject position between one frame and the next.

If you want a definitive understanding of all this then go and purchase my Autofocus Guide to Nikon and Canon AF for Long Lenses and Birds in Flight by clicking this link.

So this is the problem with the Nikon Z7 – because it’s utilizing so-called ‘on chip phase detect’ – which isn’t phase detect at all in reality – you cannot get control of these variable functions because they don’t exist in the cameras menu/firmware.

As far as I’m aware these sorts of controls are not available on the Sony cameras either.

But there is still a form of predictive AF algorithm at work in all mirrorless cameras, and it would appear that the one inside the Nikon Z7 is really poor in the way it’s balanced out with regard to it coping with moving subjects – especially those that move somewhat erratically and towards the camera.

Understand this people, the Nikon Z7 is a glorified D5000 that is not worth half the price you’ll have to pay for it.

Mirrorless systems have certain advantages over traditional dSLR systems:

  • Reduction in Shutter Lag times
  • Removal of Mirror Slap vibrations
  • Reduction of Weight leading to Greater Portability

But on-chip phase detection isn’t real phase detection, and it will not (for the foreseeable future) be anywhere near as fast or accurate as CORRECTLY setup phase detect autofocus on a top flight dSLR.

A sequence of 77 raw files that are all tack sharp and cover around 12 seconds of time – no mirrorless system is capable of doing this to the same degree of consistency as a correctly set dSLR.

The dSLR is NOT DEAD!

Don’t believe me?

Licensed Formula 1 pit and circuit access photographers make a very good living, and they stand or fall by the reliability of their camera gear.  But they are all business people at the end of the day.

If a Sony A9 and that fancy 400mm Sony lens was as reliable as the Sony fanboys claim it is, then why will we not see a plethora of Sony rigs at Suzuka on Sunday?  Just a thought…

But for heavens sake folks, if you have a hankering for a Nikon Z7 then PLEASE think about it – make yourself aware of the FACTS before you blow your wodge of wonga!

It’s NOT a professional camera in any way shape or form, and Dirk Jasper of Nikon Europe even says that – watch the video below at 19mins 48sec:

NOTE TO NIKON:  If you want to try and get me to change my mind then all you have to do is send me one guys!

I promise I won’t lick it or sniff it like that Jared Polin idiot!

 

 

Nikon Z System Thoughts

Nikon Z System Thoughts

Nikon Z

Looking to buy into this new system from Nikon?

My advice is simple – save your money, because the Nikon Z system appears to have ONE MASSIVE Achilles Heel.

It’s only provisioning you with one – YES, 1 – media slot.

That means you have ZERO storage media redundancy.

It doesn’t matter how quiet the new Nikon Z system Silent Shooting is, if you shoot a wedding on one of these cameras then you had better be carrying some hefty Liability insurance.

Do a corporate shoot and then try explaining why you need to do a re-shoot – you’ll never get your bill paid or work for them again!

I haven’t shot without backup ONCE since I bought my Nikon D3 11 years ago.

Leaving the photographer open to the vagaries of card failure without recourse to a redundant backup is the single biggest fubar any camera manufacturer can make.

And in this day and age it’s one that’s pretty much unforgivable in my opinion, especially when the purchase price of the Nikon Z cameras is so high.

The Sony fan club must be having a field-day with this.

For those of us who know what we’re talking about and are used to the way Nikon operate, it’ll be obvious that the Nikon Z cameras will be upgraded before too long.

And I’d bet that one feature of the upgraded models will be twin media slots!

Storage media doesn’t fail very often any more, but shooting to a single card is still a massive risk – one Nikon is in fact forcing upon you.

Nikon Z System Fallacy

Popular YouTubers like that idiot from Philadelphia have today stated that the wider 55mm Nikon Z mount lets in more light than the traditional 46.5mm F mount,  and he goes on to quote Nikon as saying it lets in 100% more light.

Let’s get one thing straight – it doesn’t and they didn’t!

The amount of light falling on the 36×24 sensor stays exactly the same.

If you look at a scene through a 4 foot square window, then switch to an 8 foot square window onto the same scene does the light from the scene go up?  No of course it bloody doesn’t!

What the 55mm Nikon Z mount does is give Nikon lens designers the ability to make lenses with WIDER internals – wider aperture holes/f-numbers.

So we can now design a lens with an aperture of f0.9 or f1.0 as opposed to f1.4 – which will indeed ‘transmit’ 100% or more light – f1.0 is 1 whole stop wider than f1.4.

But bare in mind that we are talking f-numbers here, and they actually have no true correlation with the real light output of a lens – for that we need T-stop values, and nobody’s mentioning those!

In Conclusion

It’s your money guys ‘n gals, so if you want to buy one then please feel free!

But just make sure you are aware of THE FACTS and are not being sold on THE HYPE.

Mirrorless cameras have a lot going for them – one would certainly agree with me when it comes to astro landscape photography that’s for sure.

But if I could afford to buy one just for astro then I wouldn’t touch one of these with a 10 foot pole – I’d be off down the Sony shop for sure!..and I can’t believe I just said that!

And that’s simply because of NO MEDIA BACKUP – WTF were Nikon thinking??

Z7 or D850?  D850 all day long – after all it’s got two card slots!

More Nikon D850 leaks

More leaked specs on the Nikon D850 – and it could be something of an imaging revolution for Nikon users after all.

Nikon D850

Screen grab of the Nikon Italy page that was live for about 5 hours yesterday, click to view full size.

According to the leaked specifications, the camera will be fitted with a back lit sensor and gapless micro lens technology.

If this is true, then all the scathing I gave the Nikon D850 specs last week may need to be ‘dialled down’ a bit – the one thing this camera will NOT BE (again,if the tech leak is true) is a pumped up FX version of the D500.

What is a back lit sensor?

You can regard all Bayer pattern CMOS sensors in your dslr and mirrorless cameras as front lit.

Light leaves the rear element of your lens and strikes the sensor, passing through the micro lenses first, then a wiring/connectivity layer, and finally it strikes the photo diodes/photosites.

Nikon D850

Front lit (left) and Back lit (right) sensor layout.

Light can scatter within that wiring layer, and the distance between the micro lenses and the photo diodes effectively narrows their viewing angle.

Having the photo diodes directly behind the micro lenses removes the scattering potential, and increases the diode viewing angle – a bit like putting your eye closer to a key hole – you see more.

A back lit tech sensor may well have a 50% or larger diode/photosite ‘view angle’ than its front lit counter part with the same mega pixel count.  Couple that with new micro lens technology to remove the interstitial gaps, and there is a lot of potential for increased performance in terms of:

  • Native gain/light gathering during the exposure
  • Increased Dynamic Range over the Nikon D810
  • Increased Dynamic Range over the Nikon D500
  • Increased high ISO performance over both the D500 and D810
  • Dare I say it, lower diffraction values?  Surely the Circle of Confusion has got to increase in size – I don’t know for certain but it would definitely be interesting to find out.

Back lit/backside illuminated/BSI CMOS sensor tech is out there already – the Sony A7R2 springs to mind.

At the begining of this post I said the D850 could be something of an imaging revolution for Nikon users – and I meant it.

It’ll be the first Nikon FX DSLR (as far as I’m aware!) to be fitted with BSI tech, but if they screw up the ADC/SNR side of things like they did with the D5, then it’ll amount to NOT A LOT.

If however, Nikon do a good job of converting the analogue output of this sensor to a digital file, then we could say that no Nikon FX digital camera has ever been capable of delivering the potential benefits of the D850.

But we are still waiting for the official release of the specs so who knows…!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

August News – Nikon D850 Thoughts

 Nikon D850 – Initial Thoughts.

Nikon D850

Before we get into my initial thoughts about the D850 “leaked specs”, Roger Styles read my D5 post from the other week and asks:

“Very interesting…and I wonder if you would care to suggest how the D500 with a 300mm f4 lens would have performed? Similar? Worse? or heaven forbid better?”

Well Roger, all I can say is that I’m not really in a position to comment on how the MultiCam 20K system worked out on the D500/300mmPF combo (I didn’t use it) but I do have  D4S, D5 and D500 7200ISO shots so you can compare the image quality with regard to noise etc:

Nikon D500, 300mm f4 PF, 1/2500th @ f8, ISO 7200. Click to view full size

Nikon D5, 500mm 1/2000th @ f8, ISO 7200. Click to view full size

Nikon D4S, 400mm f2.8 1/2500th @ f8, ISO 7200. Click to view full size

Bare in mind I’m only illustrating IQ here – so look at the out-of-focus areas and darker tones to see the differences.

Roger – I can’t offer you any real comparisons between the D5 and D500 AF performance,  but from other tests I’ve done with the D500/300PF combo I’d say it performs the same or slightly better than the D5.  But only because you are using a shorter focal length lens with theoretically greater depth of field for any given aperture and distance – therefore more AF errors are masked by DoF.

Why does the D500 image look so crappy?

The answer is simple – too many mega pixels and not enough light!

The more megapixels you squeeze into a fixed area, the smaller each one of those photosites has to be.

There are two main problems with making photosites smaller:

  1. Reduced Dynamic Range
  2. Increased Diffraction

Overall, the sensor becomes more light-hungry.

Let’s put these three sensors on an even playing field with regard to crop factor:

D4/D4S = 16MpFX = 8Mp x1.5 crop

D5 = 20.8MpFX = 10.4Mp x1.5 crop

D500 = 20.9Mp x1.5 crop = 41.8MpFX

The IQ implications of these figures are illustrated in the images above!

And this brings me nicely around to the new Nikon D850.

Nikon D850

I got rather excited about the idea of this camera when it was first thought to have a hybrid OVF/EVF – the implications for using the plethora of super-sharp older manual lenses with modern focus-peaking in an EVF made me go all swoony!

But alas, this was not to be, and instead, all we have is a pumped up FX D500 – if the leaked specifications are to be believed.

The D850 is NOT a replacement for the D810 – anyone who thinks that is an idiot.

Let’s look at these leaked specifications:

  • 45.75MP FX full frame CMOS sensor – clipped Dynamic Range then, nice one Nikon
  • 180,000 RGB sensor that’s same as the D5, with better face detection and enhanced scene recognition – really?
  • Native ISO range of 64-25600 (expandable to 32-108400) – meaningless at the top end, and I doubt the base ISO will actually be 64ISO
  • 153-point AF system with 30% more frame coverage than the D5 – a higher resolution sack of angry weasels!
  • Center AF point -4EV, and all others -3EV – same as the D5
  • 8K timelapse shooting – Who in their right mind shoots time lapse and allows the camera to process and assemble it? Oh yeah, that’s right – dickheads!
  • 4K UHD video recording in FX with no crop – pass
  • 51-photo buffer when shooting in 14-bit uncompressed RAW – GOOD. That’s really a data-pushing miracle, to be honest
  • 3.2″, 2.36-million-dot tilting LCD touchscreen with improved gesture control – tilty screens are useful but straight away are a weak point.  But what use is gesture control when you’ve got gloves on ‘cos it’s -30 below?
  • 7fps continuous shooting standard, 6fps with autofocus, 9fps when using a battery grip – here’s where the price tag will go over £4000, because the grip will be £400 plus if I know Nikon!
  • 30fps at 8MP using the electronic shutter – 8Mp raws from a 48Mp sensor – what a spiffingly top notch idea.  And is that 30fps available silently?
  • RAW can be small, medium, and large resolutions – For F***s SAKE WHY would you buy a huge capacity camera and then shoot small files with it?  Has the world gone bloody mad?
  • 0.75x magnification viewfinder, the first for a full-frame DSLR – GREAT, but you can buy an adaptor to do the same thing to the majority of existing Nikons.
  • Focus stacking. The camera can shoot up to 300 photos with 10 levels of bracketed focus from nearest to infinity for software to stack afterwards – I have every confidence that this will turn out to be crap!  It’s a gimmick to get the unskilled to part with their money.  Aimed at macro and landscape photographers who can’t be bothered to tweak their focus manually.
  • Natural Light AWB achieves better white balancing in natural light – stupid gimmick
  • Completely silent electronic shutter while shooting in live view. – could be useful for sports if it works with fast shutter speeds
  • There’s no low-pass filter – GOOD – why couldn’t they do that on the D5?
  • SD + XQD card slots – Jesus Christ – Nikon need to grow up and stop mixing media

So as I’m sure you can tell, the Nikon D850 is not setting my world on fire.

What could Nikon have given us?

A hybrid OVF/EVF with an RGBW sensor and keep the capacity down to 36Mp or a tad less would have made a good impression with me for starters.

You have to have been asleep for months to not have heard something about the Fuji GFX medium format.  That’s running at 51.4Mp on a 1441mm2 sensor, which is roughly 1.67x the area of an FX 35mm camera.

Simple maths tells us that if we trimmed the GFX sensor to fit in a 35mm DSLR then it would be – that’s right, 30Mp.  The world of photography is populated by frigging idiots who just keep clamouring for more megs – and the camera manufacturers give them what they ask for simply because the idiots spend money like it’s going out of fashion.

Listen, if you want 50 megapixels or more, then go and buy a medium format camera and get 50 megs worth of good dynamic range with nominal diffraction.

Do not buy a Nikon D850 then stick a wide angle lens on and stop down to f22 – the image will be unusable at full resolution – and I don’t need to see a raw file to know that; it’s simple physics.

How this camera will stack up on the sports/action/wildlife front remains to be seen, but I don’t see how it can even be as good as a D5 – and that’s not brilliant.

To get the full potential out of the D850 for sports/action/wildlife then you will need the vertical grip AND an ENEL18A battery or two, and a charger, because I don’t think the D850 has USB charging.

An ENEL18A battery at Park Cameras is £169.00 and a genuine MH-26a charger is crazy money anywhere!

So you will be looking at more than £4000 – and I can think of far more sensible ways to spend that lump of cash.

Nikon promised us something really special to celebrate their 100th aniversary – this ain’t special Nikon!  It’s nothing more than the DSLR equivalent of a click-bait video.

But then again, I’m going on “leaked specifications” – and they could all be lies, smoke and mirrors.  We will have to wait and see what the real specs are when Nikon officially announce the D850.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

 

Nikon D5 Extended Test

Nikon D5 Extended Test

The last week in June saw me in Norway doing something a bit different from the norm – photographing eagles all week with a 500mm prime – real hard work!

But I thought the task would be made slightly easier with the Nikon D5 running with generation 2 firmware; that is v1.10

And after a solid week of shooting my verdict is – WOEFUL!

The auto focus is still as predictable and user-friendly as a sack full of weasels, but what I found truly appalling is the image quality at lower ISO values – and by lower I mean sub-3200 ISO!

Nikon D5

Click image to view full size

Nikon D5

Click image to view full size

Shooting in Manual Exposure/Auto ISO is the most efficient way of shooting any action, especially with long glass,  but allowing the Nikon D5 to choose its ISO speed just highlights its single massive drawback – poor low ISO performance.

The shot above is at ISO 250, 1/2000th sec and f8.  The crop shows the simple adjustments done to the shot inside the Lightroom Basic panel, and as you can see there is nothing untoward there.

But just look at that appalling level of noise in the underside of the wings – as I said before – WOEFUL.

In this next image, we see the same eagle shot at the same time with the D5 (left) and a D4S (fitted with a 400 f2.8, right). Both cameras are in d25 AF mode, 1/2000th sec, f8 and ISO 1100:

Nikon D5

Click image to view full size

Both images have had a ‘zeroed’ process applied to them in Lightroom followed by a process version swap to kill the excess contrast added by Lightroom in the background.

Again there is excess noise under the wing together with detail degradation in the D5 shot on the left.

As a final comparison, here is the same moment in time caught on the D5, D4S and 1DXMk2. All 3 images have a flat, neutralised process in Lightroom with no added output sharpening:

Nikon D5

Nikon D5, 500mm 1/2000th, f8, ISO 1600
Click to view full size.

Nikon D5

Nikon D4S, 400mm, 1/2000th, f8, ISO 1250
Click to view full size.

Nikon D5

Canon IDXMk2, 400mm, 1/2000th, f6.3, ISO 640
Click to view full size.

You do really have to view these images at their full size.

On the whole, I have to say that the 1DXMk2 is the worst image in terms of IQ – both Nikons have it beaten to death – which I must admit surprises me considering the ideal lighting conditions.

But as for the two Nikon shots the D4S still produced the slightly better IQ, lens differences aside, there is still slightly more noise in the D5 shot.

The other error in the D5 shot is due to the sack of angry weasels – the auto focus – the shot is not sharp.  But funnily enough the previous frame was:

Nikon D5

Click to view full size.

As ever, the Nikon AF tends to bounce around a little bit. Even though the D5 has the new Multicam 20K system there is still the same problem of subtle focus bounce that I personally try and negate by shooting at f8 – hoping that the extended DoF will mitigate its visual effect.

But it doesn’t always work, and the D5 will still sometimes drop focus completely on the ‘pick shot’ when the eagle hits the water.

Over the course of the week, I tried pretty much every conceivable permutation of Blocked Shot Response/Subject Motion/AF Mode settings that made any sense – and a few that didn’t – and to be honest they were all as bad as each other.  In the end, I settled on BSR/SM settings at default ‘out the box’, and Group AF mode – but that was way less than perfect.

Ole Martins eagles do represent possibly the most testing scenario for any camera auto focus system, but overall I have to say that for this particular job the D5 AF is an epic fail and a retrograde step – the D4/D4S faired much better.

And both Nikon systems get kicked into touch by the Canon system,  but the IQ of the 1DXMk2 lets it down somewhat, especially in comparison to the Nikon D4/D4S.

I’m certain that better IQ can be had from the Canon system if only Canon would give its users a firmware update to record uncompressed raw; something I’ve been banging on about for years.

But this post is about the Nikon D5 image quality at lower ISOs – and in all honesty, it’s CRAP.

Further Nikon D5 AF thoughts:

Typically of Nikon, they bring out another firmware update just after I use the damn thing for a week.  I’ve not tried the new firmware yet but the ‘added AF modes’ of a single row and single column closest point have a certain smack of desperation in my eyes.

I know that OEM AF calibration is done in both the horizontal and vertical planes.  So to give a camera the ability to use its horizontal calculations and to ignore its vertical ones, and vice versa says to me that there is an imbalance between its x and y axis ‘workings out’.  Couple this with forcing the AF to pick the closest point on the subject under that row or column is basically a case of ‘hedging your bets’ even further.

Nikon should have done exactly what Canon did, and simply refine their existing AF system instead of adding a shed-load of these tracking sensors – there are just TOO MANY points resulting in too much information, and any errors between vertical and horizontal are just being amplified.

I cannot find any visual representation of the two new modes, called group-area AF (VL) with 5 points, and group-area AF (HL) with 11 points.  But if they are as described then they will be ignoring the fixed tracking points. If that is indeed the case, and these modes actually give a marked improvement, then the whole system is a waste of time and effort because it is the plethora of fixed tracking points that form the main distinction between the Multicam 3500 FX and 20K systems.

But hey, that’s just my opinion and I’m not really in possession of all the facts yet.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

 

Nikon D7500

Nikon D7500

Nikon D7500

All week my inbox has been inundated with emails from every vendor and idiot magazine extolling the virtues of the new Nikon D7500, why I should want it, buy it, and tell everyone else to do so.

In Ephotozines announcement for example,  they state that the Nikon D7500 sits ABOVE the D7200, launched back in March 2015.  And that would be a logical assumption based on the model number wouldn’t it; the D7500 could be seen as the D7200 replacement, or at least a step up from it.

WRONG !

Nikon have been making basically three classes of DSLR cameras, Basic, Intermediate and Professional/Advanced.  Late last year Nikon brought out the D5600 which sat firmly in the BASIC bracket.

The D5600 importantly has:

  • No DUAL card capability
  • No AI/AIS indexing capability
  • No vertical grip capability
  • Body Only price: around £500

The D7200 has:

  • Dual Card Slots
  • AI/AIS indexing tabs
  • A  vertical Grip capability
  • Body Only price: around £850

The NEW NIKON D7500 has:

  • NO Dual Card capability
  • NO AI/AIS indexing tabs
  • NO Vertical Grip capability
  • Body Only price: around £1300

As far as I’m aware the Nikon D7500 is THE FIRST Nikon DSLR body to cost MORE than £1000 that does NOT allow you to use the FULL range of Nikon current production lenses such as the 50mm f1.2 or indeed any of the stellar AI/AIS lenses available on the used market for little money.

Nikon D7500

The AI/AIS tab on the Nikon lens mount – missing on the Nikon D7500.

The D7200 DOES all the above, and the D5600 does not.

Take the Nikon D7500 and swap the 7 and the 5 around and you get a Nikon D5700 – now that’s more like it!

But Andy you’re talking crap – it’s got the brain of the D500!

Yes – so they say, but it’s still got basically the same AF system as the FX D750 and DX D7200 – the 51-point MultiCam 3500 FXII, not the D500 MultiCam 20K.

But Andy you’re talking crap – it does 8 frames per second!

That’s as maybe – but how long can it keep that up for buffering to a crappy SD card?

Nikon have basically ripped the 20.9Mp sensor and Expeed 5 processor out of the D500 and jammed it into a D5600, together with the AF module from the camera YOU THINK it’s replacing, and decided to charge you more than TWICE THE PRICE.

Nice one Nikon!

Yes, image quality wise the Nikon D7500 should kick the living daylights out of both the D5600 and the D7200 if only because of the D500 SNR firmware that drives its image recording.

But at that price???

Believe me – a used D3S would crucify the Nikon D7500 on IQ alone, with the added benefit of dual CF cards and an FX sensor.

But perhaps you don’t want the glorious wide angle performance afforded you by an FX sensor.  If that’s the case then be sensible with your money and get a D500 – used ones are out there at the same sort of money as the new Nikon D7500.

It just shoots for ever buffering to an XQD card, has AI/AIS capability and can be fitted with a vertical grip.  Then the AF can be revved up a bit more by using a big battery out of the one of the FX pro bodies.

You’ve only got to look at the specs for Nikon D7500 to know it’s something of an epic FAIL!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

 

Camera ISO Settings

The Truth About ISO

Andy Astbury,noise,iso

The effect of increased ISO – in camera “push processing” automatically lift the exposure value to where the camera thinks it is supposed to be.

Back in the days of ‘wet photography’, we had rolls and sheets of film that carried various ISO/ASA/DIN numbers.

ISO stands for International Standards Organisation

ASA stands for American Standards Association

DIN – well, that’s ‘Deutsches Institut für Normung’ or German Institute for Standardisation

ISO and ASA were basically identical values, and DIN = (log10)ISO x10 +1, so ASA/ISO 100 equated to DIN 21….nope, I’m not going to say anything!

These numbers were the film ‘speed’ values.  Film speed was critical to exposure metering as it specified the film sensitivity to light.  Metering a scene properly at the correct ISO/ASA/DIN gave us an overall exposure value that ensured the film got the correct ‘dose’ of light from the shutter speed and aperture combination.

Low ISO/ASA/DIN values meant the film was LESS sensitive to light (SLOW FILM) and high values meant MORE sensitivity to light (FAST FILM).

Ilford Pan F was a very slow mono negative film at ASA 50, while Ilford HP5 was a fast 400 ASA mono negative film.

The other characteristic of film speed was ‘grain’.  Correctly exposed, Pan F was extremely fine grained, whereas correctly exposed HP5 was ‘visibly grainy’ on an 8×10 print.

Another Ilford mono negative film I used a lot was FP4.  The stated ASA for this film was 125ASA/ISO, but I always rated it (set the meter ASA speed dial) to 100ASA on my 35mm Canon A1 and F1 (yup, you read that right!) because they both slightly over-metered most scenes.

If we needed to shoot at 1/1000th and f8 but 100ASA only gave us 1/250th at f8 we would switch to 400ASA film – two stops greater sensitivity to light means we can take a shutter speed two stops shorter for the same aperture and thus get our required 1/1000th sec.

But, what if we were already set up with 400ASA film, but the meter (set at 400ASA) was only giving us 1/250th?

Prior to the release of films like Delta 1600/3200 we would put a fresh roll of 400ASA film in the camera and set the meter to a whopping 1600ASA! We would deliberately UNDER EXPOSE Ilford HP5 or Kodak Tri-X by 2 stops to give us our required 1/1000th at f8.

The two stops underexposed film would then be ‘push processed’, which basically meant it was given a longer time in the developer.  This ‘push processing’ always gave us a grainy image, because of the manner in which photographic chemistry worked.

And just to confuse you even more, very occasionally a situation might arise where we would over expose film and ‘pull process’ it – but that’s another story.

We are not here for a history lesson, but the point you need to understand is this – we had a camera body into which we inserted various sensitivities of film, and that sometimes those sensitivities were chemically manipulated in processing.

That Was Then, This Is Now!

ISO/ASA/DIN was SENSITIVITY of FILM.

It is NOT SENSITIVITY of your DSLR SENSOR….!!! Understand that once and for all!

The sensitivity of your sensor IS FIXED.

It is set in Silicon when the sensor is manufactured.  Just like the sensitivity of Kodak Tri-X Pan was ‘fixed’ at 400ASA/ISO when it was made at the factory.

How is the sensitivity of a digital sensor fixed?  By the SIZE of the individual PHOTOSITES on the sensor.

Larger photosites will gather more photons from a given exposure than small ones – it’s that simple.

The greater the number of photons captured means that the output signal from a larger photosite is GREATER than the output signal from a smaller photosite for the same exposure value (EV being a combination shutter speed and aperture/f number).

All sensors have a base level of noise – we can refer to this as the sensor ‘noise floor’.

This noise floor is an amalgamation of the noise floors of each photosite on the sensor.

But the noise floor of each photosite on the sensor is masked/obscured by the photosite signal output; therefore the greater the signal, the larger the signal to noise (S/N) ratio is said to be.

In general, larger photosites yield a higher S/N ratio than smaller ones given the same exposure.

This is why the Nikon D3 had such success being full frame but just over 12 megapixels, and it’s the reason that some of us don’t get overly excited about seeing more megapixels being crammed into our 36mm x 24mm sensors.

Anyway, the total output from a photosite contains both signal and noise floor, and the signal component can be thought of as ‘gain’ over the noise floor – natural gain.

As manufacturers put more megapixels on our sensors this natural gain DECREASES because the photosites get SMALLER – they have to in order to fit more of them into the finite sensor area.

Natural gain CAN be brought back in certain sensor designs by manipulating the design of the micro lenses that sit on top of the individual photosites. Re-design of these micro lenses to ‘suck in’ more tangential photons – rather like putting a funnel in a bottle to make filling it easier and more efficient.

There is a brilliantly simple illustration of how a sensor fits into the general scheme of things, courtesy of digital camera world:

Camera ISO Settings

The main item of note in this image is perhaps not quite so obvious, but it’s the boundary between the analogue and digital parts of the system.

We have 3 component arrays forward of this boundary:

  1. Mosaic Filter including Micro Lenses & Moire filter if fitted.
  2. Sensor Array of Photosites – these suck in photons and release proportional electrons/charge.
  3. Analogue Electronics – this holds the charge record of the photosite output.

Everything forward of the Analogue/Digital Converter – ADC – is just that, analogue! And the variety of attributes that a manufacturer puts on the sensor forward of this boundary can be thought of mostly as modifying/enhancing natural gain.

So What About My ISO Control Settings Andy?

All sensors have a BASE ISO. In other words they have an ISO sensitivity/speed rating just like film!  And as I said before THIS IS A FIXED VALUE.

The base ISO of a sensor photosite array can be defined as that ISO setting that yields the best dynamic range across the whole array, and it is the ISO setting that carries NO internal amplification.

Your chosen ISO setting has absolutely ZERO effect on what happens forward of the Analogue/Digital boundary – NONE.

So, all those idiots who tell you that ISO effects/governs exposure are WRONG – it has nothing to do with it for the simple reason that ISO effecting sensor sensitivity is a total misconception….end of!

Now I’ll bet that’s going to set off a whole raft of negative comments and arguments – and they will all be wrong, because they don’t know what they’re talking about!

The ‘digital side’ of the boundary is where all the ‘voodoo’ happens, and it’s where your ISO settings come into play.

At the end of an exposure the Analogue Digital Converter, or ADC, comes along and makes a ‘count’ of the contents of the ‘analogue electronics’ mosaic (as Digital Camera World like to call it – nice and unambiguous!).

Remember, it’s counting/measuring TOTAL OUTPUT from each photosite – and that comprises both signal and noise floor outputs.

Camera ISO Settings

If the exposure has been carried out at ‘base ISO’ then we have the maximum S/N ratio, as in column 1.

However, if we increase our ISO setting above ‘base’ then the total sensor array output looks like column 2.  We have in effect UNDER EXPOSED the shot, resulting in a reduced signal.  But we have the same value for the noise floor, so we have a lower S/N ratio.

In principal, the ADC cannot discriminate between noise floor and signal outputs, and so all it sees in one output value for each photosite.

At base ISO this isn’t a problem, but once we begin to shoot at ISO settings above base, under exposing in other words, the cameras internal image processors apply gain to boost the output values handed to it by the ADC.

Yes, this boosts the signal output, but it also amplifies the noise floor component of the signal at the same time – hence that perennial problem we all like to call ‘high ISO noise’.

So your ISO control behaves in exactly the same way as the ‘gain switch’ on a CB or long wave radio, or indeed the db gain on a microphone – ISO is just applied gain.

Things You Should Know

My first digital camera had a CCD (charge coupled device) sensor, it was made by Fuji and it cost a bloody fortune.

Cameras today for the most part use CMOS (complimentary metal oxide semi-conductor) sensors.

  • CCD sensors create high-quality, low-noise images.
  • CMOS sensors, traditionally, are more susceptible to noise.
  • Because each photosite on a CMOS sensor has a series of transistors located next to it, the light sensitivity of a CMOS chip tends to be lower. Many of the photons striking the sensory photosite array hit the transistors instead of the photosites.  This is where the newer micro lens designs come in handy.
  • A CMOS sensor consumes less power. CCD sensors can consume up to 100 times more power than an equivalent CMOS sensor.
  • CMOS chips can be produced easily, making them cheaper to manufacture than CCD sensors.

Basic CMOS tech has changed very little over the years – by that I’m referring to the actual ‘sensing’ bit of the sensor.  Yes, the individual photosites are now manufactured with more precision and consistency, but the basic methodology is pretty much ‘same as it ever was’.

But what HAS changed are the bits they stick in front of it – most notably micro-lens design; and the stuff that goes behind it, the ADC and image processors (IPs).

The ADC used to be 12 bit, now they are 14 bit on most digital cameras, and even 16 bit on some.  Increasing the bit depth accuracy in the ADC means it can detect smaller variations in output signal values between adjacent photosites.

As long as the ‘bits’ that come after the ADC can handle these extended values then the result can extend the cameras dynamic range.

But the ADC and IPs are firmware based in their operation, and so when you turn your ISO above base you are relying on a set of algorithms to handle the business of compensating for your under exposure.

All this takes place AFTER the shutter has closed – so again, ISO settings have less than nothing to do with the exposure of the image; said exposure has been made and finished with before any ISO applied gain occurs.

For a camera to be revolutionary in terms of high ISO image quality it must deliver a lower noise floor than its predecessor whilst maintaining or bettering its predecessors low ISO performance in terms of noise and dynamic range.

This where Nikon have screwed their own pooch with the D5. At ISOs below 3200 it has poorer IQ and narrower dynamic range than either the D4 or 4S.  Perhaps some of this problem could be due to the sensor photosite pitch (diameter) of 6.45 microns compared to the D4/4S of 7.30 microns – but I think it’s mostly due to poor ADC and S/N firmware; which of course can be corrected in the future.

Can I Get More Photons Onto My Sensor Andy?

You can get more photons onto your sensor by changing to a lens that lets in more light.

You might now by thinking that I mean switching glass based on a lower f-number or f-stop.

If so you’re half right.  I’m actually talking about t-stops.

The f-number of a lens is basically an expression of the relationship between maximum aperture diameter and focal length, and is an indication of the amount of light the lens lets in.

T-stops are slightly different. They are a direct indicator of how much light is transmitted by the lens – in other words how much light is actually being allowed to leave the rear element.

We could have two lenses of identical focal length and f-number, but one contains 17 lens elements and the other only 13. Assuming the glass and any coatings are of equal quality then the lens with fewer elements will have a higher transmission value and therefore lower T-number.

As an example, the Canon 85mm f1.2 actually has a t-number of 1.4, and so it’s letting in pretty much HALF a stop less light than you might think it is.

In Conclusion

I’ve deliberately not embellished this post with lots of images taken at high ISO – I’ve posted and published enough of those in the past.

I’ve given you this information so that you can digest it and hopefully understand more about how your camera works and what’s going on.  Only by understanding how something works can you deploy or use it to your best advantage.

I regularly take, market and sell images taken at ISO speeds that a lot of folk wouldn’t go anywhere near – even when they are using the same camera as me.

The sole reason I opt for high ISO settings is to obtain very fast shutter speeds with big glass in order to freeze action, especially of subjects close to the camera.  You can freeze very little action with a 500mm lens using speeds in the hundredths of a second.

Picture buyers love frozen high speed action and they don’t mind some noise if the shot is a bit special. Noise doesn’t look anywhere near as severe in a print as it does on your monitor either, so high ISO values are nothing to shy away from – especially if to do so would be at the expense of the ‘shot of a lifetime’.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Nikon D5 Autofocus Test

Nikon D5 Autofocus Test

On Tuesday afternoon I had the opportunity to do a short Nikon D5 Autofocus test, courtesy of Paul Atkins.

Nikon D5 Autofocus

Using Paul’s newly acquired D5, his Nikon 400mm f2.8 lens and his two crackpot Golden retrievers ‘Enzo’ and ‘Raffa’, his large lawn and a couple of tennis balls, I gave the camera some hard work to do.

PLEASE NOTE: as you can see from the publication date, this is an early release test.

Bearing in mind that attentiveness, obedience and eagerness to please, are not traits that figure greatly in either dogs mental make-up; I was pleasantly surprised as to how instructive the exercise was – well done puppies!

On a good run at the camera the dogs cover something like 28 metres in 5 seconds, starting out at around 31 metres away and ending just outside the focus limiter at around 3 metres.

The camera was set to my MANUAL EXPOSURE + AUTO ISO, 1/4000th and f6.3.

I should also stress that there was NO AF FINE TUNE set for these shots.

That silliness has been taken to a whole new level of craziness now – sweet Jesus it makes me so angry!

I set the AF up very much how I’d set a Canon 1DX or 1DXMk2, and then went through the majority of the AF modes.

Dynamic 9, 25 and 72, group, 3D and ‘AUTO’ – and I was totally horrified at which mode gave the best results, and I mean BEST by a country mile!

In this video I go through the full resolution sequence of 27 shots individually so you can see how the Nikon D5 autofocus performs as the two dogs get closer to the camera with every frame.  The images have only Lightroom default sharpening applied and have had nothing done to them except my standard contrast-lowering adjustments.

Don’t be silly – click the YouTube link in the bottom of the above frame and watch it at full resolution on my channel!

Please don’t take this as a definitive test of the Nikon D5 autofocus – I certainly don’t, and neither am I prepared to draw much of a conclusion from it.  But it works!

I know I’m not alone in finding the Auto focus mode to be ‘better’ in terms of consistent focus, but to my mind this should NOT be the case, especially on such a target moving in such close proximity to a long telephoto – even if it is an f2.8.

At this point I’m not going to bother showing the sequences from the other modes, just take my word for it that I was shocked at the distinctly poorer performance using the other modes I tried – except for GROUP, which has never worked well in this sort of situation.

A couple of things to note:

  1. I used the same settings at 12fps and the consistency level dropped by around 45%, so no change in that old chestnut.  The Canon 1DX suffered from it too, but with the limited testing I’ve done on the 1DXMk2, Canons idea of crafting and honing the existing AF system, as opposed to Nikons ‘chucking the baby out with the bath water’, seems to have solved the problem to a greater degree.
  2. The D5 raw files seem to have lost a little tractability in ‘lifting the blacks/shadows/exposure’ – something that I’ve always held typical .NEF files in high esteem for.  This I found quite surprising seeing as the camera was heralded as the ‘Prince of Darkness’.   It’s also the one thing above all else that I despise in Canon 1DX raw files.  But Canon have upped their game considerably on this front with the 1DXMk2.

Seriously folks, it’s like some sort of demented see-saw or merry-go-round with these manufacturers…

The new Canon is coming to Norway with me in a couple of weeks, and Mr. Paul is bringing his D5, so there will be quite a bit of performance testing going on throughout September and October.

Hope these shots peek your interest folks!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

 

More Thoughts on the Nikon D5

More Thoughts on the Nikon D5

Nikon D5

Okay, so the Nikon D5 has started to slowly trickle into the hands of people now (though sadly not those belonging to yours truly) and yesterday I was sent a link to some downloadable D5 RAW files.

That link is HERE for those of you that might want a look for yourself.

If you have received this post via email PLEASE view it on the blog itself.

Also, as a matter of interest, Nikon have made the D5 User Manual available HERE.

As I’ve said in earlier posts, I’m quite excited at the thought of the new AF system giving the Nikon shooter access to more Canon-esque controls, but image quality in terms of sensor output and the recorded .NEF are always paramount in my mind.

So I jumped all over the above-linked RAW files, but I have to say that looking at them in Lightroom (neutralised of course as per my previous post HERE) I’m not as overly enamoured as I thought I was going to be.

I’ve seen this camera called ‘The New Lord of Darkness’ with much play being made of its high ISO capability, so let’s have a look at that shall we.  ISO range is 100 to 102,000 expandable to 50 and 3,276,800 – ISO stupid and then some!

Before we go any further, I suspect that the downloadable files are Lossless Compressed!

Want to see what 3,276,800ISO looks like?

All shots are by a user named Andy (not me) posted on NikonGear.net – thanks go to him for sharing.

Nikon D5

ISO 3,286,800 – Image is NOT full resolution as it’s too big for WordPress!

Nikon D5

ISO 3,286,800 or H5 – full resolution crop – CLICK to view at full size.

This image is, honestly, unusable SO WHY charge you the buyer for the ability to produce it??

Let’s have a look at the high native ISO 102,400:

Nikon D5

Nikon D5 highest native 102,400 ISO – click for full rez view.

Okay, so in certain circumstances this image would be useful for press reproduction, and I can see the appeal for photojournalists – this level of performance will earn them money, and lots of it.

But I suspect that 75%+ of all global D5 purchasers in its first 12 months will NOT benefit from this performance because they are not in that market place. If you produce weddings shots that look like this then you’re going to get sued up the Ying Yang for sure.

What is interesting is a link on Nikon Rumours which was kindly sent to me yesterday by Paul Atkins:

Nikon D5

Photographic Dynamic Range comparison of Nikon D4 and Nikon D5.

This is a ‘live graph’ which you can access directly via this link HERE

This is a comparison of PDR, not EDR, and you will not find the D5 listed at DXO Mark at this moment in time. If you want to get your head around the difference between PDR and EDR then click HERE or HERE. But be warned, MATHS ALERT!

Below 1600 ISO the D5 has a significantly lower PDR than the D4, putting it very much in line with the Canon 1DX at <1600ISO – see HERE.

To my mind the D5 is an all-action camera with good low light capabilities; as is/was the D3 in its time, D4 and D4s and Canons 1DX.

As such, lower ISO performance is not really important – it’s a question of ‘horses for courses’ and the right tool for the job.  But the fact that the PDR is lower came as a surprise.

Time was, not so long ago, that I was ‘capped’ at sub 800 ISO for wildlife/action photography – the D3 put paid to that and 1200 to 1600 ISO became my working values when needed.

The D4 and Canon 1DX shifted the goal posts again – 3200 ISO became a standard AND both cameras had AutoISO that worked perfectly.

Nobody with a working brain chooses to work at high ISOs unless they are driven to do so by a need for high shutter speeds in low light – no matter how well a camera sensor functions, image quality will always increase with decreasing ISO.

So examination of the above PDR curves clearly indicate that the true advantage of the D5 over the D4 is on average around 1.3 stops above 1600 ISO – which is a good thing, but it’s not exactly what I’d call revolutionary.  We experience pretty much the same increase with every Nikon D FX release.

If PDR increases then the Signal to Noise ratio – S/N – pretty much appears to increase by the same value, so a visual comparison of D4 and D5 images shot at higher than 1600 ISO will show around 1.3Ev to 1.5Ev of reduced ISO noise.

What I do like is the IQ improvements at 8000 ISO and above.  8000 ISO on a D4 is bad, and its top native 12800 ISO is awful.  Based on the downloaded raw files, anyone could process a D5 12800 ISO image at full resolution to pass QC at ANY stock agency – just go and download those RAWS on the link at the top of the post and see for yourself.

25,600 ISO – well I might be tempted to down-res those by perhaps 1000 to 1500 pixels on the long edge to help with noise reduction a bit, and chucked onto A3 or A3+ print you would never really notice the noise.

Do I like what I see – yes I do!

Is the D5 the new ‘Lord of Darkness’ – no it bloomin’ well isn’t!  Lord of Low Light – quite possibly.  The ISO H1 to H5 images go from questionable to crap in my opinion.

Like the Canon 1DX, I’m not impressed at lower ISO values than 1600 – I can get the same or better performance with a D4 or 4S – admittedly though with a lower pixel count.

So overall Andy, does the D5 impress?  Well, still being in a hands-off situation I’m not going to commit to a full answer there.  When all is said and done, the AF performance will be the key issue for me – a high DR/low noise image of an out of focus subject in no use to me – or anyone else for that matter!

The Way I See Things As They Stand At This Very Moment.

The KING of low ISO with high resolution DSLRs is the Nikon D800E – but it’s not without its limitations. And before you start screaming 5DS at me – it’s a nail, go away..

The best all-round VFM DSLR is the Nikon D810 – a proper jack of all trades who’s only weakness is the occasionally questionable Nikon AF.

The best DSLR autofocus for action is without doubt the Canon 1DX – fabulous AF, crap ergonomics, crap sensor.

The best DSLR sensor for action is the Nikon D4 or 4S – great ergonomics, great sensor, sometimes dubious AF.

But, going on the raw files I’ve downloaded, I strongly suspect that the D5 is going to have the best action sensor title stitched up and dethrone the D4/4S.

Will it dethrone the Canon 1DX in the action AF department – no idea is my truthful answer.  I suppose anything is possible, but if it did, would the soon-to-be-released 1DXMk2 take the throne back – quite possibly.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Raw File Compression

Raw File Compression.

Today I’m going to give you my point of view over that most vexatious question – is LOSSLESS raw file compression TRULY lossless?

I’m going to upset one heck of a lot of people here, and my chances of Canon letting me have any new kit to test are going to disappear over the horizon at a great rate of knots, but I feel compelled to post!

What prompts me to commit this act of potential suicide?

It’s this shot from my recent trip to Norway:

FW1Q1351-2

Direct from Camera

FW1Q1351

Processed in Lightroom

I had originally intended to shoot Nikon on this trip using a hire 400mm f2.8, but right at the last minute there was a problem with the lens that couldn’t be sorted out in time, so Calumet supplied me with a 1DX and a 200-400 f4 to basically get me out of a sticky situation.

As you should all know by now, the only problems I have with Canon cameras are their  short Dynamic Range, and Canons steadfast refusal to allow for uncompressed raw recording.

The less experienced shooter/processor might look at the shot “ex camera” and be disappointed – it looks like crap, with far too much contrast, overly dark shadows and near-blown highlights.

Shot on Nikon the same image would look more in keeping with the processed version IF SHOT using the uncompressed raw option, which is something I always do without fail; and the extra 3/4 stop dynamic range of the D4 would make a world of difference too.

Would the AF have done as good a job – who knows!

The lighting in the shot is epic from a visual PoV, but bad from a camera exposure one. A wider dynamic range and zero raw compression on my Nikon D4 would allow me to have a little more ‘cavalier attitude’ to lighting scenarios like this – usually I’d shoot with +2/3Ev permanently dialled into the camera.  Overall the extra dynamic range would give me less contrast, and I’d have more highlight detail and less need to bump up the shadow areas in post.

In other words processing would be easier, faster and a lot less convoluted.

But I can’t stress enough just how much detrimental difference LOSSLESS raw file compression CAN SOMETIMES make to a shot.

Now there is a lot – and I mean A LOT – of opinionated garbage written all over the internet on various forums etc about lossless raw file compression, and it drives me nuts.  Some say it’s bad, most say it makes no difference – and both camps are WRONG!

Sometimes there is NO visual difference between UNCOMPRESSED and LOSSLESS, and sometimes there IS.  It all depends on the lighting and the nature of the scene/subject colours and how they interact with said lighting.

The main problem with the ‘it makes no difference’ camp is that they never substantiate their claims; and if they are Canon shooters they can’t – because they can’t produce an image with zero raw file compression to compare their standard lossless CR2 files to!

So I’ve come up with a way of illustrating visually the differences between various levels of raw file compression on Nikon using the D800E and Photoshop.

But before we ‘get to it’ let’s firstly refresh your understanding. A camera raw file is basically a gamma 1.0, or LINEAR gamma file:

gamma,gamma encoding,Andy Astbury

Linear (top) vs Encoded Gamma

The right hand 50% of the linear gamma gradient represents the brightest whole stop of exposure – that’s one heck of a lot of potential for recording subtle highlight detail in a raw file.

It also represents the area of tonal range that is frequently most effected by any form of raw file compression.

Neither Nikon or Canon will reveal to the world the algorithm-based methods they use for lossless or lossy raw file compression, but it usually works by a process of ‘Bayer Binning’.

Bayer_Pattern

If we take a 2×2 block, it contains 2 green, 1 red and 1 blue photosite photon value – if we average the green value and then interpolate new values for red and blue output we will successfully compress the raw file.  But the data will be ‘faux’ data, not real data.

The other method we could use is to compress the tonal values in that brightest stop of recorded highlight tone – which is massive don’t forget – but this will result in a ’rounding up or down’ of certain bright tonal values thus potentially reducing some of the more subtle highlight details.

We could also use some variant of the same type of algorithm to ‘rationalise’ shadow detail as well – with pretty much the same result.

In the face of Nikon and Canons refusal to divulge their methodologies behind raw file compression, especially lossless, we can only guess what is actually happening.

I read somewhere that with lossless raw file compression the compression algorithms leave a trace instruction about what they have done and where they’ve done it in order that a raw handler programme such as Lightroom can actually ‘undo’ the compression effects – that sounds like a recipe for disaster if you ask me!

Personally I neither know nor do I care – I know that lossless raw file compression CAN be detrimental to images shot under certain conditions, and here’s the proof – of a fashion:

Let’s look at the following files:

raw file compression

Image 1: 14 bit UNCOMPRESSED

raw file compression

Image 2: 14 bit UNCOMPRESSED

raw file compression

Image 3: 14 bit LOSSLESS compression

raw file compression

Image 4: 14 bit LOSSY compression

raw file compression

Image 5: 12 bit UNCOMPRESSED

Yes, there are 2 files which are identical, that is 14 bit uncompressed – and there’s a reason for that which will become apparent in a minute.

First, some basic Photoshop ‘stuff’.  If I open TWO images in Photoshop as separate layers in the same document, and change the blend mode of the top layer to DIFFERENCE I can then see the differences between the two ‘images’.  It’s not a perfect way of proving my point because of the phenomenon of photon flux.

Photon Flux Andy??? WTF is that?

Well, here’s where shooting two identical 14 bit uncompressed files comes in – they themselves are NOT identical!:

controlunamplified control

The result of overlaying the two identical uncompressed raw files (above left) – it looks almost black all over indicating that the two shots are indeed pretty much the same in every pixel.  But if I amplify the image with a levels layer (above right) you can see the differences more clearly.

So there you have it – Photon Flux! The difference between two 14 bit UNCOMPRESSED raw files shot at the same time, same ISO, shutter speed AND with a FULLY MANUAL APERTURE.  The only difference between the two shots is the ratio and number of photons striking the subject and being reflected into the lens.

Firstly 14 Bit UNCOMPRESSED compared to 14 bit LOSSLESS (the important one!):

raw file compression

14 bit UNCOMPRESSED vs 14 bit LOSSLESS

Please remember, the above ‘difference’ image contains photon flux variations too, but if you look carefully you will see greater differences than in the ‘flux only’ image above.

raw file compression raw file compression

The two images above illustrate the differences between 14 bit uncompressed and 14 bit LOSSY compression (left) and 14 bit UNCOMPRESSED and 12 bit UNCOMPRESSED (right) just for good measure!

In Conclusion

As I indicated earlier in the post, this is not a definitive testing method, sequential shots will always contain a photon flux variation that ‘pollutes’ the ‘difference’ image.

I purposefully chose this white subject with textured aluminium fittings and a blackish LED screen because the majority of sensor response will lie in that brightest gamma 1.0 stop.

The exposure was a constant +1EV, 1/30th @ f 18 and 100 ISO – nearly maximum dynamic range for the D800E, and f18 was set manually to avoid any aperture flicker caused by auto stop down.

You can see from all the ‘difference’ images that the part of the subject that seems to suffer the most is the aluminium part, not the white areas.  The aluminium has a stippled texture causing a myriad of small specular highlights – brighter than the white parts of the subject.

What would 14 bit uncompressed minus 14 bit lossless minus photon flux look like?  In a perfect world I’d be able to show you accurately, but we don’t live in one of those so I can’t!

We can try it using the flux shot from earlier:

raw file compression

But this is wildly inaccurate as the flux component is not pertinent to the photons at the actual time the lossless compression shot was taken.  But the fact that you CAN see an image does HINT that there is a real difference between UNCOMPRESSED and LOSSLESS compression – in certain circumstances at least.

If you have never used a camera that offers the zero raw file compression option then basically what you’ve never had you never miss.  But as a Nikon shooter I shoot uncompressed all the time – 90% of the time I don’t need to, but it just saves me having to remember something when I do need the option.

raw file compression

Would this 1DX shot be served any better through UNCOMPRESSED raw recording?  Most likely NO – why?  Low Dynamic Range caused in the main by flat low contrast lighting means no deep dark shadows and nothing approaching a highlight.

I don’t see it as a costly option in terms of buffer capacity or on-board storage, and when it comes to processing I would much rather have a surfeit of sensor data rather than a lack of it – no matter how small that deficit might be.

Lossless raw file compression has NO positive effect on your images, and it’s sole purpose in life is to allow you to fit more shots on the storage media – that’s it pure and simple.  If you have the option to shoot uncompressed then do so, and buy a bigger card!

What pisses my off about Canon is that it would only take, I’m sure, a firmware upgrade to give the 1DX et al the ability to record with zero raw file compression – and, whether needed or not, it would stop miserable grumpy gits like me banging on about it!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.