🤘🤔Nikon D800E, D810 and D850 Usable Dynamic Range Test and Budget Buying Advice👌🤘

Like it or not this video compares the real usable dynamic range of Nikons’ three most used cameras for landscape photography. Everyone bangs on endlessly about dynamic range when in fact most of them have no clue what they’re talking about. If you want to see the truth about dynamic range improvements since 2012 then the results of this video may well come as a shock!

If you want to see the tonal response curves of the three Nikon models AND the Canon 5DMk3 then click the image below to view at full size:

usable dynamic range
As you can see, there is very little difference between the three Nikon cameras in the highlight to midtone zone, and the biggest difference between all 4 cameras comes on the left side of the chart, the shadows and lower midtones.

Spot Metering – In Camera vs Separate Meter

Landscape Photography Exposure, ETTR and Highlight Spot Metering Accuracy

CLICK ME to watch the Video!

In this short(ish) video I want to show you why your camera spot meter can be something of a ‘let down’ in exposure terms when you are trying to obtain an accurate highlight reading for your scene.

Most ‘in camera’ spot meters are a lot more imprecise than the user imagines.

Nikon spot meter ‘spots’ are generally 4mm wide. That means 4mm ON THE SENSOR!

On an FX camera the sensor is roughly 36mm wide, so the ‘spot’ actually has a ‘window’ or ‘measuring footprint’ that is 1/9th of the viewfinders horizontal field of view.

And don’t think that because you use a Canon you’re any better off – in fact you’re worse off because Canon spots are a tiny bit BIGGER!

In this example I use a shot taken with a Zeiss 21mm – this lens has a horizontal angle of view of 81 degrees.

So the 4mm Nikon spot has an angle of view equivalent to 1/9th the frame and hence 1/9th the horizontal AoV of the lens, in other words 9 degrees.

Aimed at the brightest highlight in the sky its footprint takes in sky tones that are dramatically less than highlights. So the reading it will give me is ‘darker’ than it should be.

My D800E has it’s highlight clipping/blow point 3.6 stops above its mid tone.

If I then apply ETTR to this reading by exposing at +3 to +3.3 stops it will result in blown highlights.

But if I use a 1 degree spot meter aimed at exactly the same place its much narrower angle sees ONLY THE BRIGHT AREA I’m aiming at. This gives me a much BRIGHTER reading, allowing me to push the exposure by +3.3 stops without blowing any of my highlights.

Hope this all makes sense folks.

Don’t forget, any questions or queries then just ask!

If you feel I deserve some support for putting this video and article together then please consider joining my membership site over on Patreon by using the link below.

Support me on Patreon

Alternatively you could donate via PayPal to tuition@wildlifeinpixels.net

All the best

Andy

Dynamic Range, Mid Tones, Metering and ETTR

Dynamic Range, Mid Tones, Metering and ETTR

I recently uploaded a video to my YouTube channel showing you an easy way to find the ‘usable dynamic range’ of you dSLR:

 

The other day I was out with Paul Atkins for a landscape session in the awesome Dinorwic Quarry in Llanberis, Snowdonia.  Highly dynamic clouds and moody light made the place look more like Mordor!

dynamic range

Looking towards the top of the Llanberis Pass from the middle level of Dinorwic Quarry and Electric Mountain.

Here are the 6 unedited shots that make this finished panoramic view:

dynamic range

As you can see, the images are are shot in a vertical aspect ratio.  Shooting at 200mm on the D800E this yields an assembled pano that is 16,000 x 7000 pixels; the advantages for both digital sales and print should be obvious to you!

As you can see, the bright parts of the sky are a lot brighter in the captures than they are in the finished image, but they are not ‘blown’.  Also the shadows in the foreground are not choked or blocked.

In other words the captures are shot ETTR.

Meter – in camera or external.

Any light meter basically looks at a scene (or part thereof) and AVERAGES the tones that it sees.  This average value value is then classed by the meter is MID GREY and the exposure is calculated in terms of the 3 variables you set – Time, Intensity and Applied Gain, or shutter, aperture and ISO.

But this leads to all sorts of problems.

All meters are calibrated to an ANSI Standard of 12% grey (though this gets a bit ambiguous between manufactures and testers).  But you can get a good idea of what ‘light meter mid grey/mid tone” looks like by mentally assigning an RGB value of 118,118,118 to it.

However, we – humans – find 18% grey a more acceptable ‘mid tone grey’ both in print and on our modern monitors.

NOTE: 18% grey refers to the level of REFLECTANCE – it reflects 18% of the light falling on it.  It can also be reproduced in Photoshop using a grey with 128,128.128 RGB values.

So problem number 1 is that of mid tone perception and the difference between what you ‘see’ and what the camera sees and then does in terms of exposure (if you let the camera make a decision for you).

dynamic range

128RGB grey versus 118RGB meter mid grey

Click on the pano image from Dinorwic to view it bigger, then try to FIND a mid grey that you could point your camera meter at – you can’t.

Remember, the grey you try to measure MUST be exactly mid-grey – try it, it’ll drive you nuts trying to find it!

This leads us to problem number 2.

Take your camera outside, find a white wall.  Fill your frame with it and take a shot using ZERO exposure compensation – the wall will look GREY in the resulting shot not WHITE.

Next, find something matte black or near to it.  Fill your frame with it and take another shot – the black will look grey in the shot not black(ish).

Problem number 3 is this – and it’s a bit of a two-headed serpent.  An exposure meter of any kind is COLOUR BLIND but YOU can SEE colours but are tonally blinded to them to some degree or other:

Simple primary red, green and blue translate to vastly different grey tones which comes as a big surprise to a lot of folk, especially how tonally light green is.

Scene or Subject Brightness Range

Any scene in front of you and your camera has a range of tones from brightest to darkest, and this tonal range is the subject brightness range or SBR for short.  Some folk even refer to it as the scene dynamic range.

If you put your camera meter into spot mode you can meter around your chosen scene and make note of the different exposure values for the brightest and darkest areas of your potential shot.

You camera spot meter isn’t the most accurate of spot meters because its ‘spot’ is just too big, typically between 4mm and 5mm, but it will serve to give you a pretty good idea of your potential SBR.

A 1 degree spot meter will, with correct usage, yield a somewhat more accurate picture (pun intended) of the precise SBR of the scene in front of you.

Right about now some of you will be thinking I’m hair-splitting and talking about unnecessary things in todays modern world of post-processing shadow and highlight recovery.

Photography today is full of folk who are prepared to forego the CRAFT of the expert photographer in favour of getting it half-right in camera and then using the crutch of software recovery to correct their mistakes.

Here’s the news – recovery of popped highlights is IMPOSSIBLE and recovery of shadows to anymore than a small degree results in pixel artifacting.  Get this, two WRONGS do NOT make a RIGHT!

If the Mercedes F1 team went racing with the same attitude as the majority of camera users take pictures with, then F1 would be banned because drivers would die at an alarming rate and no car would ever make the finish line!

So, one way or another we can quantify our potential scene SBR.

“But Andy I don’t need to do that because my camera meter does that for me…….”

Oh no it does NOT, it just averages it to what IT THINKS is a correct mid tone grey – which it invariably isn’t!

This whole mid tone/mid grey ‘thing’ is a complete waste of time because:

  • It’s near impossible to find a true mid tone in your scene to take a reading off.
  • What you want as a mid tone will be at odds with your camera meter by at least 1/2stop.
  • If you are shooting wildlife or landscapes you can’t introduce a ‘grey card’.
  • Because of the above, your shot WILL BE UNDER EXPOSED.

“Yeah, but I can always bracket my shots and do an exposure blend Andy so you’re still talking crap….”

Two answers to that one:

  1. You can’t bracket shots and blend if your MAIN subject is moving – de-ghosting is only effective on small parts of a scene with minimal movement between frames.
  2. The popular “shoot and bracket two each end” makes you look like total dickhead and illustrates that you know less than zero about exposure.  Try doing that on a paying job in front of the client and see how long you last in a commercial environment.

By far the BEST way of calculating exposure is the ETTR method.

ETTR, Expose to the Right.

If you meter for a highlight, your camera will treat that as a mid tone because your camera ASSUMES it’s a mid tone.

Your camera meter is a robot programmed to react to anything it sees in EXACTLY the same way.  It doesn’t matter if your subject is a black cat in the coal house or a snow man in a snow storm, the result will be the same 118,118,118 grey sludge.

Mid tones are as we’ve already ascertained, difficult to pin down and full of ambiguity but highlights are not.  So let’s meter the brightest area of the image and expose it hard over to the right of the histogram.

The simplest way to achieve this is to use your live view histogram with the camera in full manual mode.

Unlike the post-shot review histogram, the live-view histogram is not subject to jpeg compression, and can be thought of as something of a direct readout of scene tonality/brightness.

Using your exposure controls (usually shutter speed for landscape photography) you can increase your exposure to push the highlight peak of the histogram to the right as far as you can go before ‘hitting the wall’ on the right hand side of the histogram axis – in other words the camera sensor highlight clipping point.

Of course, this has the added benefit of shifting ALL the other tones ( mids and shadows) to the right as well,resulting in far less clipping potential in your shadow areas.

So back to Dinorwic again and here’s a shot that has been exposed ETTR on the live view histogram using spot metering over what I deemed to be the brightest area of the sky:

The red square indicates the approximate size of the spot meter area.

I was a naughty boy not recording this on video for you but I forgot to pack the HDMI lead for the video recorder – I’ll do one shortly!

The problem with using the Live View Histogram is that it can be a bit of a struggle to see it.  your live view screen itself can be hard to see in certain light conditions outside, and the live view histogram itself is usually a bit on the small side – no where near as big as the image review histogram you can see here.

But looking at the review histogram above you can see that there’s a ‘little bit more juice’ to be had in terms of exposure of the highlights because of that tiny gap between the right end of the histogram and the ‘wall’ at the end of the axis.

Going back to the video the maximum ETTR ‘tipping point’ was centered around these three shots:

Clipped

Not Clipped (the one we allocated the star rating to). Exposure is -1/3rd stop below clipped.

Safe, but -2/3rd stop below Clipped.

The review histogram puts the Dinorwic shot highlights firmly in the same exposure bracket as ‘Safe, but -2/3rd stop below Clipped, and tells us there is another 1/3rd stop ‘more juice’ to be had!

So lengthening the exposure by 1/3rd stop and changing from 160th sec to 1/50th sec gives us this:

The red square indicates the approximate size of the spot meter area.

Live View Histogram ETTR

Live View Histogram plus 1/3 stop more juice! Highlights STILL below Clipping Point and shadows get 1/3rd stop more exposure.

That’s what it’s all about baby – MORE JUICE!

And you will not be in a position to confidently acquire more juice unless you find the USABLE DYNAMIC RANGE of your camera sensor.

The whole purpose of finding that usable DR is to discover where your highlight and shadow clipping points are – and they are very different between camera models.

For instance, the highlight clipping point value of the Nikon D850 is different from that of the Nikon D800E, but the shadow clipping point is pretty similar.

There is an awful lot more use to discovering your cameras usable dynamic range than a lot of folk imagine.

And if you do it the precise way then you can acquire a separate meter that will accept camera profiling:

dynamic range

You can create a dynamic range profile for your camera (and lens combo*) and then load it into the meter:

and then have your cameras usable dynamic range as part of the metering scale – so then you have NO EXCUSE for producing a less than optimum exposure.

(*)Note: yes, the lens does have an effect on dynamic range due to micro-contrast and light transmission variables – if you want to be super-picky!

AND THEY SAY HANDHELD METERS ARE DEAD, OLD TECH and of NO USE!!!

Anyone who says or even thinks that is a total KNOB.

Your camera dynamic range, the truthful one – FIND IT, KNOW IT, USE IT.

And don’t listen to the idiots and know-nothings, just listen and heed the advice of those of us who actually know what we’re doing.

NOTE:  The value of grey (gray) cards and how to use them for accurate measurement is a subject in its own right and provides the curious with some really interesting reading.  Believe me it’s far more expansive than the info I’ve given here.  But adopting an ETTR approach when exposing to sensor that you KNOW the physical behavior of (dynamic response to light/dynamic range) can alleviate you of all critical mid-tone concerns.

This article has taken me over 8 hours to produce in total, and is yours to view for FREE.  If you feel I deserve some support for doing this then please consider joining my membership site over on Patreon by using the link below.

Support me on Patreon

Alternatively you could donate via PayPal to tuition@wildlifeinpixels.net

More ISO Settings Misinformation

More ISO Settings Misinformation

This WAS going to be a post about exposure…….!

But, this morning I was on the Facebook page of a friend where I came across a link he’d shared to this page which makes a feature of this diagram:

exposure

Please Note: I’m “hot linking” this image so’s not to be accused of theft!

This style of schematic for the Exposure Triangle is years old and so is nothing new.

When using FILM the ISO value IS a measure of sensitivity to light – that of the film, in other words its SPEED.  Higher ISO film is more sensitive to light than lower ISO film, and the increased sensitivity brings about larger ‘grain’ in the image.

When we talk ‘digital photography’ however the ISO value HAS NOTHING TO WITH SENSITIVITY TO LIGHT – of anything inside your camera, including the damn sensor.

ISO in digital cameras is APPLIED GAIN. Applied ‘after the exposure has been made’..after the fact…after Elvis has left the freaking building!

Your sensors sensitivity to light is FIXED and dictated by the size of the photosites that make up the sensor – that is, the sensor pixel pitch.

People who persist in leading you guys into thinking that ISO controls sensor sensitivity should be shot, or better still strapped over the muzzle of an artillery piece……..

The article then goes on to advise the following pile of horse crap:

Recommended ISO settings:

  • ISO 100 or 200 for sunny and bright daylight 
  • ISO 400 ISO for cloudy days, or indoors 
  • ISO 800 for indoors (without a flash) 
  • ISO 1600+ for very low light situations 

WTF??? What year are we in – 2007??

And this pile of new 2017 junk is on a website dedicated to a certain camera manufacturer who’s cameras have produced superb images at ISO settings way higher than the parameters stated above for ages.

Take this shot from a Canon 1DX Mk1 – old tech/off-sensor ADCs etc:

Canon 1DX Mark 1 ISO 10,000 1/8000th @ f7.1 – click for the full size image.

ISO settings are at the bottom of the pile when it comes to good action photography – the overriding importance at all times is SHUTTER SPEED and AF performance.

I don’t care about ‘ISO noise’ anywhere near as much as I care about focus and freezing the action, and neither should you guys.

What have the above and below shots got in common – apart from the wildlife category?

More ISO Settings Misinformation

1/8000th shutter speed and an aperture of 7.1 – aperture for DoF and shutter speed to freeze the action – stuff the ‘noise’.

And speaking of ‘noise’ – there isn’t anywhere near enough to screw the shot up for stock sale even at full size, and I’ll tell you again, noise hardly prints at all!

Here’s another ‘old tech’ Canon 1DX Mk1 shot:

More ISO Settings Misinformation

I don’t really want to wheel the same shots out over and over but don’t forget the Canon 5D Mk4 Great Tit at 10,000ISO or 1DX Mk2 Musk Ox at 16,000ISO either!

Don’t get me wrong, when I want maximum Dynamic Range I shoot at base ISO, but generally you’ll never find me shooting at any fixed ISO other than base; other than when shooting astro landscapes.  Everything else is Auto ISO.

So a fan website, in 2017, is basically telling you not to use the ISO speeds that I use all the damn time – and they are justifying that with bad information.

Please people, 90% plus of what you see on the web is total garbage, please don’t take it as gospel truth until you check with someone who actually knows what they are talking about.

Do I know what I’m talking about, well, only you can judge that one.  But everything I do tell you can be justified with full resolution images – not meaningless little jpegs on a web site.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Anyway, that’s it – rant over!

As ever, if you like the info in this post hit the subscribe button. Hop over to my YouTube channel and subscribe there too and if you are feeling generous then a couple of bucks donation via PayPal to tuition@wildlifeinpixels.net would be gratefully appreciated!

Thanks Folks!

Canon 5D Mk4 Review – Conclusions

Canon 5D Mk4 Review – Conclusions

Canon 5D Mk4

So, this has been a long time coming, but I like to be thorough you know.

The question everyone wanted answering was “is the Canon 5D Mk4 ‘better’ than the 5D Mk3 Andy”..?

The short answer is, ‘in my opinion’ a very affirmative YES.

But of course I’ve got to justify the ‘yes’ and that can be done by stating the important improvements – better image quality and autofocus.

Just the same as with its high performance cousin the 1DX Mk2, the Canon 5D Mk4 has had an impressive IQ boost brought about by one thing above all else – the SENSOR and its recorded Output.

The auto focus system has had the same overhaul found on the 1DX Mk2, and so there’s another big improvement.  Nope, the 5D Mk3 AF was NOT the same as that found on the original 1DX….

If you are a ‘tech slag’ then you’ll love the ‘touch screen’ menu, and the GPS too.

The touch screen drove me nuts when I first got hold of this camera – I hated it.  But I’ve gotten so used to it now that when I turned it off the other day I soon turned it back on – changing settings is tedious without it!

The SENSOR.

Nikon have had the lead over Canon for quite a while when it comes to RAW recording:

  • Lower noise levels – especially at low to mid-range ISOs (100 to 6400)
  • Better shadow recovery
  • Option to shoot fully uncompressed 14bit RAW

Ok, so Canon (stupidly in my opinion) still refuse to allow you to shoot true uncompressed RAW, but on the other two counts they have at long last just about caught up with the boys from Minato.

For Canon users the sensor and its recorded RAW output on both the Canon 5D Mk4 (and 1DX Mk2) is something quite revolutionary; while as a Nikon user I’ve been used to it for ages!

What is it I’m talking about?  The benefit of having the ADC ‘on sensor’ or ‘on die’ to give it the correct terminology.

Canon have previously had their ADC circuitry buried deep in their DIGIC chips which are separate from the sensor, and so require wired connection.  This leads to two distinct problems:

  1. Number of connections is physically limited.
  2. Signal Entropy!

I’ll do a separate blog post covering sensor makeup shortly.

But now with the above two camera body sensors they’ve gone the Nikon way, using ADCs integrated within the sensors themselves.

It’s a well known fact that Nikon have used Sony sensors, or made sensors of Sony design by ‘special arrangement’, for ages.

In output terms, the Canon 5D Mk4 and Canon 1DX Mk2 sensors do bare such a spookily strong likeness to the Sony Dual Pixel Exmoor design – the coincidence is staggering!

What this means is basically:

  • A lower noise floor.
  • Greater potential shadow and highlight recovery over its predecessor.

Canon 5D Mk4 Dynamic Range

There are all sorts of reviews/claims plastered across the web that claim the Canon 5D Mk4 has a greater dynamic range than the class leader Nikon D810.  These claims, all by ‘third party idiots’ mind you, not Canon, are based on test results published by DXO Mark.

Canon 5D Mk4

If only the idiots could read a graph!

According to the graph, at base ISO the Nikon D810 kills it by well over a stop, and doesn’t fall behind until base + 2.5 stops – 300 ISO indicated.

For landscape and other high definition/resolution photography you are going to be using your camera at base ISO to maximize DR, so basically the 5D Mk4 doesn’t even come close in this respect.

Having said all that, the way DXO Mark conduct their testing is somewhat circumspect in a lot of folks opinions – mine included.  Nonetheless, these results are being regularly misinterpreted and misquoted  everywhere!

When it comes to actual ‘tripod on the ground’ dynamic range you will always and without fail find that the ‘real’ DR is lower than the ‘oft quoted’ version – why?  Because the ‘testers’ try too hard and use complex methodologies that involve maths, or ‘scaling’ techniques that look test images as 13″x19″ prints – crazy!

All I’m interested in is how much of a scenes brightness range can I record on the sensor with one single exposure; and will I need to bracket exposures.

So let’s have a look at the performance of the 5D Mk4 sensor and see how much we can milk it for:

Canon 5D Mk4

So here’s a scene outside ‘Chez Andy’ on a dull and rather overcast day – this gives the camera a better fighting chance than it would have on a bright blue sky day will full bore sunshine.

Evaluative metering gives a manual exposure reading of 1/30th sec for f8 at 100ISO (base ISO from what I can gather).

The two main regions of interest are obvious in any test of dynamic range – brightest highlights and darkest shadows, the areas indicated by the red circles, together with their spot metered values.

The indicated spot for the sky is a bit misleading – I actually pointed the camera straight up at the sky with the lens defocused and nothing but ‘sky’ in the frame!

Also, bare in mind that camera meters give you an exposure to record a tone as 50% grey!

So I shot a bracketed sequence from 1/250th to 4 secs, at 100ISO and f8.

Canon 5D Mk4

The scene brightness range runs to a metered 11 stops, so if DXO Marks published test DR of 13.59Ev at 100 ISO (64 ISO as they would call it) is correct then one or more of these frames WILL contain detail in both the bright highlights and darkest shadows.

We might have to ‘recover’ that detail in post, but it should all be there within the recorded sensor output.

Guess what – it isn’t.  Very nearly, but not quite. Feel free to download the raw files yourself by clicking here (approx 2mins download).

To save a ton of typing and image uploading I’ll run a short video on how I do a quick assessment of the images to obtain a ‘real world’ ball-park DR value:

And purely as an exercise, what can we pull out of this single frame?

Canon 5D Mk4

Looks somewhat HDR-ish because of the dramatic highlight and shadow recovery settings, but it just goes to show what you can pull back on this Canon 5D Mk4 sensor – you’d never pull this off on a single frame shot done with a 5D Mk3.

If I run the same type of rough analysis on the Nikon D810 and a descent bit of Zeiss glass I get a DR approximating 11.5 stops, and pretty much the same for the D800E.

More importantly, for the Canon 5D Mk3 the result is no more than 9.5 stops, but I’ve only tested it using the older 16-35mm f2.8 Mk2.

Just to clarify the DXO Mark ‘thing’ – while I either question or argue the numerical value of most of their sensor tests, the ‘trends’ identified within those results are pretty much spot on.

A good place to view more realistic DR values for a large number of sensors/cameras can be found here.

And as a final caveat regarding ANY sensor DR test – the test is based on the RECORDED SENSOR OUTPUT.  This is solely comprised of the ADC and image processors ‘digitised interpretation’ of the true ‘analogue output’ of the sensor. 

Is this a distortion of reality?  Maybe, but for the moment it’s what we’re stuck with!

So I think the Canon 5D Mk4 does pretty good on the dynamic range front, but the crazy high values the ‘third party idiots’ bandy about are just pie in the sky.

Frankly DR values of 13 to 14+ stops from a 14 bit ADC and a 36×24 sensor are something of a ‘step beyond’.  A 16 bit ADC on a medium format sensor on the other hand……but then that’s what you pay the big bucks for!

But just so we’re clear, the Canon 5D Mk4 DR is very noticeably greater than that of its predecessor.

Autofocus Performance

Now I’ve already posted about this HERE. So if you haven’t already read that then do so first.

I find the Canon 5D Mk4 noticeably faster in AF acquisition the the Mk3, and a lot more responsive when tracking subjects moving directly towards the camera.  It’s not a 1DX Mk2 under these circumstances, but I was surprised at just how close it came to its big brother in this respect.

However! Unlike the 1DX Mk2 which ‘sticks to a subject like glue no matter what’ in the tracking department, the Canon 5D Mk4 can sometimes chuck its toys out the pram when subjected to lens flare.

This means that back lit subjects CAN sometimes present a bit of a problem.

Canon 5D Mk4

Back lit compositions against a dark background and without flare cause zero problems.

But introduce a bit of flare and things can go pear-shaped very quickly:

Canon 5D Mk4

Please note: I said ‘can’ not ‘does’ – it doesn’t happen all the time.  But when it does, even keeping the AF tracking active and on target doesn’t help you when it does ‘stuff up’ – if it’s not focused in the desired plane at frame 1 it stays that way for the entire frame sequence.

This can most likely be cured with a firmware update, but as it stands at the time of writing then this shot, done with the 1DX Mk2 could be problematic:

Canon 1DX Mk2

…when you consider it’s just one frame from a long action sequence with lens flare where every frame is sharp.

Canon 1DX Mk2

But then again, the 5D Mk4 isn’t trying to be a 1DX Mk2; it’s just trying to be better at everything than the 5D Mk3 is/was.

ISO Settings – Noise

Hopefully you will have already read my post Camera ISO Settings – The Truth About ISO

If you haven’t then may I suggest you do – pronto!

ISO, or ‘post exposure applied gain’ is all relative to the number of photons passing through the lens and being collected by the photosites on the sensor.

The net result is that a shot at base ISO can look like crap if you are trying to photograph the ubiquitous ‘black cat in the coal house at midnight’, and 10,000 ISO can look epic in the presence of huge photon counts:

Canon 5D Mk4

Great Tit. Canon 5DMkIV, Canon 500mm f4 L IS II, ISO 10,000

The Canon 5D Mk4 IS less noise at any ISO setting than its predecessor 5D Mk3, again simply because of the ‘on die’ or sensor-integrated ADC.

As I said earlier, the older Canons – and that includes the crackpot 5DS and SR – have off dye ADC components, and this limits the number of connections between the sensor and the ADC. This number was (I’m fairly certain!) limited to 8 with cameras fitted with a single Digic processor, and 16 in those with twin Digics.

In order for the system to turn a respectable image processing time this low number of communications channels or buses had to carry all the sensor data to ADCs that needed to chew it up and spit it out at a great rate of knots – in other words they are high frequency ADCs.

And here is the kicker; there is a rigid and inflexible bond between operating speed/frequency and noise.  This is the noise seen in your shadows – especially when you try to recover them by even a modest amount.

Moving the ADC ‘on die’ allows for more connections. This in turn allows for the use of ADCs with lower operating frequencies, which in turn results in a lower noise floor.

I’m not going to produce a raft of comparison shots between the Canon 5D Mk4 and its predecessor – hell, this post is long enough as it is, and there are plenty of them already on the net.

In Conclusion – Major Improvements over the 5D Mk3

The Canon 5D Mk4 IS a better camera than its predecessor in the two major attributes of a stills camera:

  1. Faster Auto Focus with greater flexibility and control.
  2. Improved Dynamic Range, Noise Floor and post-process latitude – all of which can be attributed to the switch by Canon to ‘on die’ ADC circuitry.

These above two improvements are major, and possibly more far-reaching than a lot of you may imagine.

Other Improvements:

  1. More megapixels if that floats your boat.
  2. Frame rate increased from 6fps to 7fps – though I don’t like a fixed fps personally.
  3. Touch screen menu system.
  4. Built-in GPS – which can drain the battery BTW if not set properly in the menu.
  5. Built-in Wi-Fi – which I have yet to get working!

Things I Don’t Like:

  1. Dual Pixel Raw – God in Heaven what a crock!  Dual pixel tech was created to give phase detection AF for video. But Still Camera Setting 2 on page 1 is like Canon thought “how can we turn this into a USP for the gullible stills-only camera buyer”.
  2. SD media slot – come on Canon – twin CF (not twin C-Fast) or switch to XQD.
  3. It eats batteries if you forget to turn off WiFi and GPS.
  4. Pathetic lack of proper viewfinder blind – seriously Canon!
  5. The persistent refusal of Canon to offer uncompressed RAW recording. It would take the smallest of firmware updates.  To me it just seems ridiculous not to give the user the choice as Nikon and others do.

So yes, in my opinion, the Canon 5D Mk4 is a better camera than the 5D Mk3.

If you own a 5D Mk3 have you GOT to trade it in?  That depends on what you want out of your camera and only you know that.

Would I trade in my D800E for one?  Hell NO!

But if you do fancy the upgrade from the Mk3 then, based on the review example I have here, you will see a considerable beneficial difference in your images – unless of course your name is Neil Burton!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.