Lumenzia for Wildlife

The Lumenzia Photoshop extension

Yet more on the usefulness of the Lumenzia Photoshop extension, the short cut to great looking images of all types and styles.

I had an email from client and blog follower David Sparks after my last post about this useful mighty Photoshop tool.

He sent these before and after rail shots:

20141002-_D4S6303

Before adding Lumenzia. Click for larger view.

After adding Lumenzia

After adding Lumenzia. Click for larger view.

difference

Comparison overlay – see how the left side of the image has that extra presence – and that’s just with the click of a couple of buttons in the Lumenzia GUI. Click to view larger.

Here is what David had to say in his email:

Andy, here is a before and after.  Processing was much, much faster than usual, using Lumenzia.

Thanks for bringing it to my attention….I’m working my way through your Image Processing in LR4 & Photoshop + LR5 bundle and enjoying it very much.

And as my friend and blog follower Frank Etchells put it:

Excellent recommendation this Andy. Bought it first time from your previous posting… at just over £27 it’s marvellous :)

What gets me puzzled is the fact that these Lumenzia posts have had over 500 separate page views in the last few days but less then 3% of you have bought it – WTF are you guys waiting for…

Get it BOUGHT – NOW – HERE

UPDATE: Greg Benz (the plugin author) has launched a comprehensive Lumenzia training course – see my post here for more information.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Colour Editing in Photoshop

Colour Editing in Photoshop using the Channel Mixer

I’ve just uploaded 3 video lessons on THE BEST way to do selective colour changes in Photoshop using the Channel Mixer.

This is a far better and more accurate way to change the colour of something whilst maintaining all its original tonality, and it is vastly better than the commonly touted Hue saturation method.

HueSat doesn’t do the job with 100% fidelity, and you are very limited in the colour choice.

Using the Channel Mixer method you can effectively make every single colour in the Pantone colour spectrum simply by using Pantone/RGB conversion figures.

If you watch the videos on YouTube it may take a minute for the HD play option to activate.

Part 1 is here:

Part 2 here:

Part 3 here:

The demo file can be downloaded on the link below:

https://dl.dropboxusercontent.com/u/87066369/Caterham.psd.zip

There are many instances where you might want or need to change the colour of an object in your image, and this is exactly what the Channel Mixer exists for; not for creating crappy black and white conversions as some crackpots think.

Give it a try for yourself by downloading the file and following along with the videos – the file has the path built into it, put these paths are simple to make with then pen tool.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Camera Calibration

Custom Camera Calibration

The other day I had an email fall into my inbox from leading UK online retailer…whose name escapes me but is very short… that made my blood pressure spike.  It was basically offering me 20% off the cost of something that will revolutionise my photography – ColorChecker Passport Camera Calibration Profiling software.

I got annoyed for two reasons:

  1. Who the “f***” do they think they’re talking to sending ME this – I’ve forgotten more about this colour management malarkey than they’ll ever know….do some customer research you idle bastards and save yourselves a mauling!
  2. Much more importantly – tens of thousands of you guys ‘n gals will get the same email and some will believe the crap and buy it – and you will get yourselves into the biggest world of hurt imaginable!

Don’t misunderstand me, a ColorChecker Passport makes for a very sound purchase indeed and I would not like life very much if I didn’t own one.  What made me seethe is the way it’s being marketed, and to whom.

Profile all your cameras for accurate colour reproduction…..blah,blah,blah……..

If you do NOT fully understand the implications of custom camera calibration you’ll be in so much trouble when it comes to processing you’ll feel like giving up the art of photography.

The problems lie in a few areas:

First, a camera profile is a SENSOR/ASIC OUTPUT profile – think about that a minute.

Two things influence sensor/asic output – ISO and lens colour shift – yep. that’s right, no lens is colour-neutral, and all lenses produce colour shifts either by tint or spectral absorption. And higher ISO settings usually produce a cooler, bluer image.

Let’s take a look at ISO and its influence on custom camera calibration profiling – I’m using a far better bit of software for doing the job – “IN MY OPINION” – the Adobe DNG Profile Editor – free to all MAC download and Windows download – but you do need the ColorChecker Passport itself!

I prefer the Adobe product because I find the ColorChecker software produced camera calibration profiles there were, well, pretty vile in terms of increased contrast especially; not my cup of tea at all.

camera calibration, Andy Astbury, colour, color management

5 images shot at 1 stop increments of ISO on the same camera/lens combination.

Now this is NOT a demo of software – a video tutorial of camera profiling will be on my next photography training video coming sometime soon-ish, doubtless with a somewhat verbose narrative explaining why you should or should not do it!

Above, we have 5 images shot on a D4 with a 24-70 f2.8 at 70mm under a consistent overcast daylight at 1stop increments of ISO between 200 and 3200.

Below, we can see the resultant profile and distribution of known colour reference points on the colour wheel.

camera calibration, Andy Astbury, colour, color management

Here’s the 200 ISO custom camera calibration profile – the portion of interest to us is the colour wheel on the left and the points of known colour distribution (the black squares and circled dot).

Next, we see the result of the image shot at 3200 ISO:

camera calibration, Andy Astbury, colour, color management

Here’s the result of the custom camera profile based on the shot taken at 3200 ISO.

Now let’s super-impose one over t’other – if ISO doesn’t matter to a camera calibration profile then we should see NO DIFFERENCE………….

camera calibration, Andy Astbury, colour, color management

The 3200 ISO profile colour distribution overlaid onto the 200 ISO profile colour distribution – it’s different and they do not match up.

……..well would you bloody believe it!  Embark on custom camera calibration  profiling your camera and then apply that profile to an image shot with the same lens under the same lighting conditions but at a different ISO, and your colours will not be right.

So now my assertions about ISO have been vindicated, let’s take a look at skinning the cat another way, by keeping ISO the same but switching lenses.

Below is the result of a 500mm f4 at 1000 ISO:

camera calibration, Andy Astbury, colour, color management

Profile result of a 500mm f4 at 1000 ISO

And below we have the 24-70mm f2.8 @ 70mm and 1000 ISO:

camera calibration, Andy Astbury, colour, color management

Profile result of a 24-70mm f2.8 @ 70mm at 1000 ISO

Let’s overlay those two and see if there’s any difference:

camera calibration, Andy Astbury, colour, color management

Profile results of a 500mm f4 at 1000 ISO and the 24-70 f2.8 at 1000 ISO – as massively different as day and night.

Whoops….it’s all turned to crap!

Just take a moment to look at the info here.  There is movement in the orange/red/red magentas, but even bigger movements in the yellows/greens and the blues and blue/magentas.

Because these comparisons are done simply in Photoshop layers with the top layer at 50% opacity you can even see there’s an overall difference in the Hue and Saturation slider values for the two profiles – the 500mm profile is 2 and -10 respectively and the 24-70mm is actually 1 and -9.

The basic upshot of this information is that the two lenses apply a different colour cast to your image AND that cast is not always uniformly applied to all areas of the colour spectrum.

And if you really want to “screw the pooch” then here’s the above comparison side by side with with  the 500f4 1000iso against the 24-70mm f2.8 200iso view:

camera calibration, Andy Astbury, colour, color management

500mm f4/24-70mm f2.8 1000 ISO comparison versus 500mm f4 1000 ISO and 24-70mm f2.8 200 ISO.

A totally different spectral distribution of colour reference points again.

And I’m not even going to bother showing you that the same camera/lens/ISO combo will give different results under different lighting conditions – you should by now be able to envisage that little nugget yourselves.

So, Custom Camera Calibration – if you do it right then you’ll be profiling every body/lens combo you have, at every conceivable ISO value and lighting condition – it’s one of those things that if you don’t do it all then you’d be best off not doing at all in most cases.

I can think of a few instances where I would do it as a matter of course, such as scientific work, photo-microscopy, and artwork photography/copystand work etc, but these would be well outside the remit the more normal photographic practices.

As I said earlier, the Passport device itself is worth far more than it’s weight in gold – set up and light your shot and include the Passport device in a prominent place. Take a second shot without it and use shot 1 to custom white balance shot 2 – a dead easy process that makes the device invaluable for portrait and studio work etc.

But I hope by now you can begin to see the futility of trying to use a custom camera calibration profile on a “one size fits all” basis – it just won’t work correctly; and yet for the most part this is how it’s marketed – especially by third party retailers.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Exposure Compensation

Exposure Compensation

Exposure Compensation – that’s something else that cropped up once or twice for the chaps on my recent Norwegian Eagle workshop!

We had something like 420 or more dives from eagles during the trip, and very few if any were shot with flat metering, or 0Ev compensation.

What is Exposure Compensation, and why do we need to use it?

It all begins with this little button:

Exposure Compensation,exposure

D3 Exposure Compensation button – Nikon, Canon and most others use the same symbol.

Pushing this button and rotating your main command dial will select a certain exposure compensation value.

Why do we need to use Exposure Compensation though?

Cameras, for all their complexity and “intelligent whotsits” are basically STUPID!  They don’t know WHAT you are trying to photograph, or HOW you are trying to photograph it.

They make a lot of very basic assumptions about what you are trying to do – 99.99% of which are WRONG!

The camera does NOT know if you are trying to photograph:

  • A white cat in a coal shed
  • A black cat in a snow storm
  • A white cat in a snow storm
  • A black cat in a coal shed

All it sees is a frame full of various amounts of light and shade, and depending on your metering mode (which should always be Matrix/Evaluative – see post here) it gives you an “average mean exposure value”.

Take a general scene of fairly low contrast under flat overcast light:

exposure compensation,exposure,metering

A scene as WE see it.

exposure compensation,exposure,metering

The same scene as the camera METER sees it.

exposure compensation,exposure,metering

Lighter tones within the scene.

exposure compensation,exposure,metering

Some darker area tones within the scene.

exposure compensation,exposure,metering

The exposure is governed by the PREDOMINANT tone.

As discussed in the previous metering article mentioned earlier, only MATRIX/EVALUATIVE takes the entire frame area into account.

Okay, so that scene was fairly bland on the old tonal front, so let’s have a look at something a little more relevant:

exposure compensation,exposure,metering

Straight off the camera with no processing. 1/2000th @ f4 1600ISO +1.3Ev

exposure compensation,exposure,metering

As the camera metered the scene WITHOUT compensation.

Why would the image be so dark and under exposed?

Well here’s an approximation of the cameras average tone “thought process”:

exposure compensation,exposure,metering

The approximate average value of the scene.

But if we look at some averages WITHIN the overall image:

exposure compensation,exposure,metering

Random tonal averages within the image.

We can see that the tonal values for the subject are generally darker than the average scene value, therefore the camera records those values as “under exposed”.

This is further compounded by the cameras brain making the decision that the commonest tonal value MUST represent “mid grey” – which it DOESN’T; it’s lighter than that – and so under exposing the image even further!

Now I’m not going to get into the argument about “what is mid grey” and do Nikon et al calibrate to 12%, 18%, 20% or whatever – to be honest it’s “neither here nor there” from our standpoint.

What is CRITICAL though is that we understand the old adage:

“Light Subject Dark Background = Under, or negative exposure compensation. And that Dark Subject Light Background = Over, or positive exposure compensation”.

Okay, but what are we actually doing?

In any exposure mode other than Manual mode, we are allowing the camera to meter the scene AND make the decision over which shutter speed or aperture to use depending on whether we have the camera in Av or Tv mode – that’s Canon-speak for A or S on Nikon.

If we are in shutter priority/S/Tv mode then the camera sets the aperture to give us its metered exposure – that thing that’s usually WRONG! – at the shutter speed we’ve selected.

If, as in the case above, we ADD +1.3Ev – one and one third stops of POSITIVE exposure compensation, the camera uses the shutter speed we’ve selected but then opens up the aperture WIDER than it’s “brain” wants it to.

How wide? 1.3 stops wider, thus allowing 1.3 stops more light into the the sensor during the exposure time.

If we were in Av/A or aperture priority mode then it’s the shutter speed that would take up the slack and become 1.3 stops SLOWER than the cameras “brain” wanted it to be.

Here’s an example of negative exposure compensation:

exposure compensation,exposure,metering

1/3200th @ f4.5 1000ISO -1.3Ev exposure compensation.

In this particular shot we’re pointing towards the sun – a “dark subject, light background” positive exposure compensation scenario, or so you’d think.

But I want to “protect” those orange highlights in the water and the brightest tones in the eagle, so if I “peg those highlights” just over a stop below the top end of the cameras’  tonal response curve then there is no way on earth they are going to “blow” in the final RAW file.

Manual Exposure mode can still furnish us with exposure compensation based on metering if we engage AUTO-ISO.  If we decide we want to shoot continuously with a high shutter speed and a set aperture at a fixed ISO then our exposures are going to be all over the place.  But if we engage AUTO-ISO and let the camera choose the ISO speed via the meter reading, we can use the exposure compensation adjustments just the same as we do in Av or Tv modes.

This get’s us away from the problem of fixed ISO Tv mode running out of aperture in low light or when very high shutter speeds are needed; or conversely, stopping the aperture down too far when the sun comes out! – I’ll do a breakdown on this method of shooting later in the year – it’s not without it’s problems.

Next time you get the chance to stand by a large lake or other body of water, just take a moment to notice that the water is dark in some places and light in others. ambient light falling on a moving subject can easily be very uniform and so the subject basically has the same exposure value all the time.  But it’s the changing brightness of the background as the subject moves across it that causes us to need exposure compensation.

People seem to think there’s some sort of “magic” at play when they come out with me and I’m throwing exposure compensation values at them.  But there’s no magic here folks, just an ability to see beyond “the subject, framing etc” and to actually “see the light” and understand it.

After all, when we click our shutters we are imaging light – the subject is, for the most part, purely incidental!

And there’s only one way you can learn to see light and grasp its implications for camera exposure, and that’s to practice.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

What Shutter Speed?

Shutter speed, and the choices we make over it, can have a profound effect on the outcome of the final image.

Now everyone has a grasp of shutter speed and how it relates to subject movement – at least I hope they do!

We can either use a fast shutter speed to freeze constant action, or we can use a slow shutter speed to:

  • Allow us to capture movement of the subject for creative purposes
  • Allow us to use a lower ISO/smaller aperture when shooting a subject with little or no movement.

 

Fast Shutter Speed – I need MORE LIGHT Barry!

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

1/8000th sec @ f8, Nikon D4 and 500mm f4

Good strongish sunlight directly behind the camera floods this Red Kite with light when it rolls over into a dive.  I’m daft enough to be doing this session with a 500mm f4 that has very little in the way of natural depth-of-field so I opt to shoot at f8.  Normally I’d expect to be shooting the D4 at 2000iso for action like this but my top end shutter speed is 1/8000th and this shutter speed at f8 was slightly too hot on the exposure front, so I knocked the ISO down to 1600 just to protect the highlights a little more.

Creative Slow Shutter Speed – getting rid of light.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

1/5th sec @ f22

I wanted to capture the movement in a flock of seagulls taking off from the water, so now I have to think the opposite way to the Kite shot above.

Firstly I need to think carefully about the length of shutter speed I choose: too short and I won’t capture enough movement; and too long will bring a vertical movement component into the image from me not being able to hold the camera still – so I opt for 1/5th sec.

Next to consider is aperture.  Diffraction on a deliberate motion blur has little impact, but believe it or not focus and depth of field DO – go figure!

So I can run the lens at f16/20/22 without much of a worry, and 100 ISO gets me the 1/5th sec shutter speed I need at f22.

 

Slow Shutter  Rear Curtain Synch Flash

We can use a combination of both techniques in one SINGLE exposure with the employment of flash, rear curtain synch and a relatively slow shutter speed:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

6/10th sec @ f3.5 -1Ev rear curtain synch flash

A technique the “Man Cub” uses to great effect in his nightclub photography, here he’s rotated the camera whilst the shutter is open, thus capturing the glowing LEDs and other highlights as circular trails.  As the shutter begins to close, the scene is lit by the 1/10,000th sec burst of light from the reduced power, rear curtain synched SB800 flash unit.

But things are not always quite so cut-and-dried – are they ever?

Assuming the lens you use is tack sharp and the subject is perfectly focused there are two factors that have a direct influence upon how sharp the shot will be:

  • System Vibration – caused by internal vibrations, most notably from the mirror being activated.
  • Camera Shake – caused by external forces like wind, ground vibration or you not holding the camera properly.

Shutter Speed and System Vibration

There was a time when we operated on the old adage that the slowest shutter speed you needed for general hand held shooting was equal to 1/focal length.

So if you were using a 200mm lens you shot with a minimum shutter speed of 1/200th sec, and, for the most part, that rule served us all rather well with 35mm film; assuming of course that 1/200th sec was sufficient to freeze the action!

Now this is a somewhat optimistic rule and assumes that you are hand holding the camera using a good average technique.  But put the camera on a tripod and trigger it with a cable or remote release, and it’s a whole new story.

Why?  Because sticking the camera on a tripod and not touching it during the exposure means that we have taken away the “grounding effect” of our mass from the camera and lens; thus leaving the door open to for system vibration to ruin our image.

 

How Does System Vibration Effect an Image?

Nowadays we live in a digital world with very high resolution sensors instead of film. and the very nature of a sensor – its pixel structure (to use a common parlance) has a direct influence on minimum shutter speed.

So many camera owners today have the misguided notion that using a tripod is the answer to all their prayers in terms of getting sharp images – sadly this ain’t necessarily so.

They also have the other misguided notion that “more megapixels” makes life easier – well, that definitely isn’t true!

The smallest detail that can be recorded by a sensor is a point of light in the projected image that has the same dimensions a one photosite/pixel on that sensor. So, even if a point is SMALLER than the photosite it strikes, its intensity or luminance will effect the whole photosite.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images.

A point of light smaller than 1 photosite (left) has an effect on the whole photosite (right).

If the lens is capable of resolving this tiny detail, our sensor – in this case (right) – isn’t, and so the lens out-resolves the sensor.

But let’s now consider this tiny point detail and how it effects a sensor of higher resolution; in other words, a sensor with smaller photosites:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

The same detail projected onto a higher resolution sensor (right). Though not shown, the entire photosite will be effected, but its surface area represents a much small percentage of the whole sensor area – the sensor now matches the lens resolution.

Now this might seem like a good thing; after all, we can resolve smaller details.  But, there’s a catch when it comes to vibration:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

A certain level of vibration causes the small point of light to vibrate. The extremes of this vibration are represented by the the outline circles.

The degree of movement/vibration/oscillation is identical on both sensors; but the resulting effect on the exposure is totally different:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

The same level of vibration has more effect on the higher resolution sensor.

If you read the earlier post on sensor resolution and diffraction HERE you’ll soon identify the same concept.

The upshot of it all is that “X” level of internal system vibration has a greater effect on a higher resolution sensor than it does on a lower resolution sensor.

Now what’s all this got to with shutter speed I hear you ask.  Well, whereas 1/focal length used to work pretty well back in the day, we need to advance the theory a little.

Let’s look at four shots from a Nikon D3, shot with a 300mm f2.8, mounted on a tripod and activated by a remote (so no finger-jabbing on the shutter button to effect the images).

Also please note that the lens is MANUALLY FOCUSED just once, so is sharply on the same place for all 4 shots.

These images are full resolution crops, I strongly recommend that you click on all four images to open them in new tabs and view them sequentially.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/1x (1/320th) Focal Length. No VR, No MLU (Mirror Lock Up). Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x (1/640th) Focal length. No VR. No MLU. Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x Focal length + VR. No MLU. Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x Focal length. Camera on Tripod+remote release + MLU – NO VR + Sandbag.

Now the thing is, the first shot at 1/320th looks crap because it’s riddled with system vibration – mainly a result of what’s termed ‘mirror slap’.  These vibrations travel up the lens barrel and are then reflected back by the front of the lens.  You basically end up with a packet of vibrations running up and down the lens barrel until they eventually die out.

These vibrations in effect make the sensor and the image being projected onto it ‘buzz, shimmy and shake’ – thus we get a fuzzy image; and all the fuzziness is down to internal system vibration.

We would actually have got a sharper shot hand holding the lens – the act of hand holding kills the vibrations!

As you can see in shot 2 we get a big jump in vibration reduction just by cranking the shutter speed up to 2x focal length (actually 1/640th).

The shot would be even sharper at 3x or 4x, because the vibrations are of a set frequency and thus speed of travel, and the faster the shutter speed we use the sooner we can get the exposure over and done with before the vibrations have any effect on the image.

We can employ ‘mirror up shooting’ as a technique to combat these vibrations; by lifting the mirror and then pausing to give the vibrations time to decay; and we could engage the lens VR too, as with the 3rd shot.  Collectively there has been another significant jump in overall sharpness of shot 3; though frankly the VR contribution is minimal.

I’m not a very big fan of VR !

In shot 4 you might get some idea why I’m no fan of VR.  Everything is the same as shot 3 except that the VR is OFF, and we’ve added a 3lb sandbag on top of the lens.  This does the same job as hand holding the lens – it kills the vibrations stone dead.

When you are shooting landscapes with much longer exposures/shutter speeds THE ONLY way to work is tripod plus mirror up shooting AND if you can stand to carry the weight, a good heavy sand bag!

Shot 4 would have been just as sharp if the shutter had been open for 20 seconds, just as long as there was no movement at all in the subject AND there was no ground vibration from a passing heavy goods train (there’s a rail track between the camera and the subject!).

For general tripod shooting of fairly static subjects I was always confident of sharp shots on the D3 (12Mb) at 2x focal length.

But since moving to a 16Mp D4 I’ve now found that sometimes this let’s me down, and that 2.5x focal length is a safer minimum to use.

But that’s nothing compared to what some medium format shooters have told me; where they can still detect the effects of vibration on super high resolution backs such as the IQ180 etc at as much as 5x focal length – and that’s with wide angle landscape style lenses!

So, overall my advice is to ALWAYS push for the highest shutter speed you can possibly obtain from the lighting conditions available.

Where this isn’t possible you really do need to perfect the skill of hand holding – once mastered you’ll be amazed at just how slow a shutter speed you can use WITHOUT employing the VR system (VR/IS often causes far more problems than it would apparently solve).

For long lens shooters the technique of killing vibration at low shutter speeds when the gear is mounted on a tripod is CRITICAL, because without it, the images will suffer just because of the tripod!

The remedy is simple – it’s what your left arm is for.

So, to recap:

  • If you shot without a tripod, the physical act of hand holding – properly – has a tendency to negate internal system vibrations caused by mirror slap etc just because your physical mass is in direct contact with the camera and lens, and so “damps” the vibrations.
  • If you shoot without a tripod you need to ensure that you are using a shutter speed fast enough to negate camera shake.
  • If you shoot without a tripod you need to ensure that you are using a shutter speed fast enough to FREEZE the action/movement of your subject.

 

Camera Shake and STUPID VR!

Now I’m going to have to say at the outset that this is only my opinion, and that this is pointed at Nikons VR system, and I don’t strictly know if Canons IS system works on the same math.

And this is not relevant to sensor-based stabilization, only the ‘in the lens’ type of VR.

The mechanics of how it works are somewhat irrelevant, but what is important is its working methodology.

Nikon VR works at a frequency of 1000Hz.

What is a “hertz”?  Well 1Hz = 1 full frequency cycle per second.  So 1000Hz = 1000 cycles per second, and each cycle is 1/1000th sec in duration.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Full cycle sine wave showing 1,0.5 & 0.25 cycles.

Now then, here’s the thing.  The VR unit is measuring the angular momentum of the lens movement at a rate of 1000 times per second. So in other words it is “sampling” movement every 1/1000th of a second and attempting to compensate for that movement.

But Nyquist-Shannon sampling theory – if you’re up for some mind-warping click HERE – says that effective sampling can only be achieved at half the working frequency – 500 cycles per second.

What is the time duration of one cycle at a frequency of 500Hz?  That’s right – 1/500th sec.

So basically, for normal photography, VR ceases to be of any real use at any shutter speed faster than 1/500th.

Remember shot 3 with the 300mm f2.8 earlier – I said the VR contribution at 1/640th was minimal?  Now you know why I said it!

Looking again at the frequency diagram above, we may get a fairly useful sample at 1/4 working frequency – 1/250th sec; but other than that my personal feelings about VR is that it’s junk – under normal circumstances it should be turned OFF.

What circumstances do I class as abnormal? Sitting on the floor of a heli doing ariel shots out of the open door springs to mind.

If you are working in an environment where something is vibrating YOU while you hand hold the camera then VR comes into its own.

But if it’s YOU doing the vibrating/shaking then it’s not going to help you very much in reality.

Yes, it looks good when you try it in the shop, and the sales twat tells you it’ll buy you three extra stops in shutter speed so now you can get shake-free shots at 1/10th of a second.

But unless you are photographing an anaesthetized Sloth or a statue, that 1/10th sec shutter speed is about as much use to you as a hole in the head. VR/IS only stabilizes the lens image – it doesn’t freeze time and stop a bird from flapping its wings, or indeed a brides veil from billowing in the breeze.

Don’t get me wrong; I’m not saying VR/IS is a total waste of time in ALL circumstances.  But I am saying that it’s a tool that should only be deployed when you need it, and YOU need to understand WHEN that time is; AND you need to be aware that it can cause major image problems if you use it in the wrong situation.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

In Conclusion

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

1/2000th sec is sufficient to pretty much freeze the forward motion of this eagle, but not the downward motion of the primary feathers.

This rather crappy shot of a White-tailed eagle might give you food for thought, especially if compared with the Red Kite at the start of the post.

The primary feathers are soft because we’ve run out of depth of field.  But, notice the motion blur on them too?  Even though 1/2000th sec in conjunction with a good panning technique is ample to freeze the forward motion of the bird, that same 1/2000th sec is NOT fast enough to freeze the speed of the descending primary feathers on the end of that 4 foot lever called a wing.

Even though your subject as a whole might be still for 1/60th sec or longer, unless it’s dead, some small part of it will move.  The larger the subject is in the frame then more apparent that movement will be.

Getting good sharp shots without motion blur in part of the subject, or camera shake and system vibration screwing up the entire image is easy; as long as you understand the basics – and your best tool to help you on your way is SHUTTER SPEED.

A tack sharp shot without blur but full of high iso noise is vastly superior to a noiseless shot full of blur and vibration artefacting.

Unless it’s done deliberately of course – “H-arty Farty” as my mate Ole Martin Dahle calls it!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Metering Modes Explained

Camera Metering Modes

Become a Patron!

I always get asked about which camera metering mode I use,  and to be honest, I think sometimes the folk doing the asking just can’t get their heads around my simplistic, and sometimes quite brutal answers!

“Andy, it’s got to be more complicated than that surely….otherwise why does the camera give me so many options…?”

Well, I always like to keep things really simple, mainly because I’m not the brightest diamond in the jewellery shop, and because I’m getting old and most often times my memory keeps buggering off on holiday without telling me!

But before I espouse on “metering the Uncle Andy way” let’s take a quick look at exactly how the usual metering options work and their effects on exposure.

The Metering Modes

  • Average (a setting usually buried in the center-weighted menu)
  • Spot
  • Center-weighted
  • 3D Matrix (Nikon) or Evaluative (Canon)
Metering Mode Icons

Metering Mode Icons

You can continue reading this article FREE over on my public Patreon posts pages.  Just CLICK HERE

Accurate Camera Colour within Lightroom

Obtaining accurate camera colour within Lightroom 5, in other words making the pics in your Lr Library look like they did on the back of the camera; is a problem that I’m asked about more and more since the advent of Lightroom 5 AND the latest camera marks – especially Nikon!

UPDATE NOTE: Please feel free to read this post THEN go HERE for a further post on achieving image NEUTRALITY in Lightroom 6/CC 2015

Does this problem look familiar?

Accurate Camera Colour within Lightroom

Back of the camera (left) to Lightroom (right) – click to enlarge.

The image looks fine (left) on the back of the camera, fine in the import dialogue box, and fine in the library module grid view UNTIL the previews have been created – then it looks like the image on the right.

I hear complaints that the colours are too saturated and the contrast has gone through the roof, the exposure has gone down etc etc.

All the visual descriptions are correct, but what’s responsible for the changes is mostly down to a shift in contrast.

Let’s have a closer look at the problem:

Accurate Camera Colour within Lightroom

Back of the camera (left) to Lightroom (right) – click to enlarge.

The increase in contrast has resulted in “choking” of the shadow detail under the wing of the Red Kite, loss of tonal separation in the darker mid tones, and a slight increase in the apparent luminance noise level – especially in that out-of-focus blue sky.

And of course, the other big side effect is an apparent increase in saturation.

You should all be aware of my saying that “Contrast Be Thine Enemy” by now – and so we’re hardly getting off to a good start with a situation like this are we…………

So how do we go about obtaining accurate camera colour within Lightroom?

Firstly, we need to understand just what’s going on inside the camera with regard to various settings, and what happens to those settings when we import the image into Lightroom.

Camera Settings & RAW files

Let’s consider all the various settings with regard to image control that we have in our cameras:

  • White Balance
  • Active D lighting
  • Picture Control – scene settings, sharpening etc:
  • Colour Space
  • Distortion Control
  • Vignette Control
  • High ISO NR
  • Focus Point/Group
  • Uncle Tom Cobbly & all…………..

All these are brought to bare to give us the post-view jpeg on the back of the camera.

And let’s not forget

  • Exif
  • IPTC

That post-view/review jpeg IS subjected to all the above image control settings, and is embedded in the RAW file; and the image control settings are recorded in what is called the raw file “header”.

It’s actually a lot more complex than that, with IFD & MakerNote tags and other “scrummy” tech stuff – see this ‘interesting’ article HERE – but don’t fall asleep!

If we ship the raw file to our camera manufacturers RAW file handler software such as Nikon CapNX then the embedded jpeg and the raw header data form the image preview.

However, to equip Lightroom with the ability to read headers from every digital camera on the planet would be physically impossible, and in my opinion, totally undesirable as it’s a far better raw handler than any proprietary offering from Nikon or Canon et al.

So, in a nutshell, Lightroom – and ACR – bin the embedded jpeg preview and ignore the raw file header, with the exception of white balance, together with Exif & IPTC data.

However, we still need to value the post jpeg on the camera because we use it to decide many things about exposure, DoF, focus point etc – so the impact of the various camera image settings upon that image have to be assessed.

Now here’s the thing about image control settings “in camera”.

For the most part they increase contrast, saturation and vibrancy – and as a consequence can DECREASE apparent DYNAMIC RANGE.  Now I’d rather have total control over the look and feel of my image rather than hand that control over to some poxy bit of cheap post-ASIC circuitry inside my camera.

So my recommendations are always the same – all in-camera ‘picture control’ type settings should be turned OFF; and those that can’t be turned off are set to LOW or NEUTRAL as applicable.

That way, when I view the post jpeg on the back of the camera I’m viewing the very best rendition possible of what the sensor has captured.

And it’s pointless having it any other way because when you’re shooting RAW then both Lightroom and Photoshop ACR ignore them anyway!

Accurate Camera Colour within Lightroom

So how do we obtain accurate camera colour within Lightroom?

We can begin to understand how to achieve accurate camera colour within Lightroom if we look at what happens when we import a raw file; and it’s really simple.

Lightroom needs to be “told” how to interpret the data in the raw file in order to render a viewable preview – let’s not forget folks, a raw file is NOT a visible image, just a matrix full of numbers.

In order to do this seemingly simple job Lightroom uses process version and camera calibration settings that ship inside it, telling it how to do the “initial process” of the image – if you like, it’s a default process setting.

And what do you think the default camera calibration setting is?

Accurate Camera Colour within Lightroom

The ‘contrasty’ result of the Lightroom Nikon D4 Adobe Standard camera profile.

Lightroom defaults to this displayed nomenclature “Adobe Standard” camera profile irrespective of what camera make and model the raw file is recorded by.

Importantly – you need to bare in mind that this ‘standard’ profile is camera-specific in its effect, even though the displayed name is the same when handling say D800E NEF files as it is when handling 1DX CR2 files, the background functionality is totally different and specific to the make and model of camera.

What it says on the tin is NOT what’s inside – so to speak!

So this “Adobe Standard” has as many differing effects on the overall image look as there are cameras that Lightroom supports – is it ever likely that some of them are a bit crap??!!

Some files, such as the Nikon D800 and Canon 5D3 raws seem to suffer very little if any change – in my experience at any rate – but as a D4 shooter this ‘glitch in the system’ drives me nuts.

But the walk-around is so damned easy it’s not worth stressing about:

  1. Bring said image into Lightroom (as above).
  2. Move the image to the DEVELOP module
  3. Go to the bottom settings panel – Camera Calibration.
  4. Select “Camera Neutral” from the drop-down menu:
    Accurate Camera Colour within Lightroom

    Change camera profile from ‘Adobe Standard’ to ‘Camera Neutral’ – see the difference!

    You can see that I’ve added a -25 contrast adjustment in the basics panel here too – you might not want to do that*

  5. Scoot over to the source panel side of the Lightroom GUI and open up the Presets Panel

    Accurate Camera Colour within Lightroom

    Open Presets Panel (indicated) and click the + sign to create a new preset.

  6. Give the new preset a name, and then check the Process Version and Calibration options (because of the -25 contrast adjustment I’ve added here the Contrast option is ticked).
  7. Click CREATE and the new “camera profile preset” will be stored in the USER PRESETS across ALL your Lightroom 5 catalogs.
  8. The next time you import RAW files you can ADD this preset as a DEVELOP SETTING in the import dialogue box:
    Accurate Camera Colour within Lightroom

    Choose new preset

    Accurate Camera Colour within Lightroom

    Begin the import

  9. Your images will now look like they did on the back of the camera (if you adopt my approach to camera settings at least!).

You can play around with this procedure as much as you like – I have quite a few presets for this “initial process” depending on a number of variables such as light quality and ISO used to name but two criteria (as you can see in the first image at 8. above).

The big thing I need you to understand is that the camera profile in the Camera Calibration panel of Lightroom acts merely as Lightroom’s own internal guide to the initial process settings it needs to apply to the raw file when generating it’s library module previews.

There’s nothing complicated, mysterious or sinister going on, and no changes are being made to your raw images – there’s nothing to change.

In fact, I don’t even bother switching to Camera Neutral half the time; I just do a rough initial process in the Develop module to negate the contrast in the image, and perhaps noise if I’ve been cranking the ISO a bit – then save that out as a preset.

Then again, there are occasions when I find switching to Camera Neutral is all that’s needed –  shooting low ISO wide angle landscapes when I’m using the full extent of the sensors dynamic range springs to mind.

But at least now you’ve got shots within your Lightroom library that look like they did on the back of the camera, and you haven’t got to start undoing the mess it’s made on import before you get on with the proper task at hand – processing – and keeping that contrast under control.

Some twat on a forum somewhere slagged this post off the other day saying that I was misleading folk into thinking that the shot on the back of the camera was “neutral” – WHAT A PRICK…………

All we are trying to do here is to make the image previews in Lr5 look like they did on the back of the camera – after all, it is this BACK OF CAMERA image that made us happy with the shot in the first place.

And by ‘neutralising’ the in-camera sharpening and colour/contrast picture control ramping the crappy ‘in camera’ jpeg is the best rendition we have of what the sensor saw while the shutter was open.

Yes, we are going to process the image and make it look even better, so our Lr5 preview starting point is somewhat irrelevant in the long run; but a lot of folk freak-out because Lr5 can make some really bad changes to the look of their images before they start.  All we are doing in this article is stopping Lr5 from making those unwanted changes.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

MTF, Lens & Sensor Resolution

MTF, Lens & Sensor Resolution

I’ve been ‘banging on’ about resolution lens performance and MTF over the last few posts so I’d like to start bringing all these various bits of information together with at least a modicum of simplicity.

If this is your first visit to my blog I strongly recommend you peruse HERE and HERE before going any further!

You might well ask the question “Do I really need to know this stuff – you’re a pro Andy and I’m not, so I don’t think I need to…”

My answer is “Yes you bloody well do need to know, so stop whinging – it’ll save you time and perhaps stop you wasting money…”

Words used like ‘resolution’ do tend to get used out of context sometimes, and when you guys ‘n gals are learning this stuff then things can get a mite confusing – and nowhere does terminology get more confusing than when we are talking ‘glass’.

But before we get into the idea of bringing lenses and sensors together I want to introduce you to something you’ve all heard of before – CONTRAST – and how it effects our ability to see detail, our lens’s ability to transfer detail, and our camera sensors ability to record detail.

Contrast & How It Effects the Resolving of Detail

In an earlier post HERE I briefly mentioned that the human eye can resolve 5 line pairs per millimeter, and the illustration I used to illustrate those line pairs looked rather like this:

5 line pairs per millimeter with a contrast ratio of 100% or 1.0

5 line pairs per millimeter with a contrast ratio of 100% or 1.0

Now don’t forget, these line pairs are highly magnified – in reality each pair should be 0.2mm wide.  These lines are easily differentiated because of the excessive contrast ratio between each line in a pair.

How far can contrast between the lines fall before we can’t tell the difference any more and all the lines blend together into a solid monotone?

Enter John William Strutt, the 3rd Baron Rayleigh…………

5 line pairs at bottom threshold of human vision - a 9% contrast ratio.

5 line pairs at bottom threshold of human vision – a 9% contrast ratio.

The Rayleigh Criterion basically stipulates that the ‘discernability’ of each line in a pair is low end limited to a line pair contrast ratio of 9% or above, for average human vision – that is, when each line pair is 0.2mm wide and viewed from 25cms.  Obviously they are reproduced much larger here, hence you can see ’em!

Low contrast limit for Human vision (left) & camera sensor (right).

Low contrast limit for Human vision (left) & camera sensor (right).

However, it is said in some circles that dslr sensors are typically limited to a 12% to 15% minimum line pair contrast ratio when it comes to discriminating between the individual lines.

Now before you start getting in a panic and misinterpreting this revelation you must realise that you are missing one crucial factor; but let’s just recap what we’ve got so far.

  1. A ‘line’ is a detail.
  2. but we can’t see one line (detail) without another line (detail) next to it that has a different tonal value ( our line pair).
  3. There is a limit to the contrast ratio between our two lines, below which our lines/details begin to merge together and become less distinct.

So, what is this crucial factor that we are missing; well, it’s dead simple – the line pair per millimeter (lp/mm) resolution of a camera sensor.

Now there’s something you won’t find in your cameras ‘tech specs’ that’s for sure!

Sensor Line Pair Resolution

The smallest “line” that can be recorded on a sensor is 1 photosite in width – now that makes sense doesn’t it.

But in order to see that line we must have another line next to it, and that line must have a higher or lower tonal value to a degree where the contrast ratio between the two lines is at or above the low contrast limit of the sensor.

So now we know that the smallest line pair our sensor can record is 2 photosites/pixels in width – the physical width is governed by the sensor pixel pitch; in other words the photosite diameter.

In a nutshell, the lp/mm resolution of a sensor is 0.5x the pixel row count per millimeter – referred to as the Nyquist Rate, simply because we have to define (sample) 2 lines in order to see/resolve 1 line.

The maximum resolution of an image projected by the lens that can be captured at the sensor plane – in other words, the limit of what can be USEFULLY sampled – is the Nyquist Limit.

Let’s do some practical calculations:

Canon 1DX 18.1Mp

Imaging Area = 36mm x 24mm / 5202 x 3533 pixels/photosites OR LINES.

I actually do this calculation based on the imaging area diagonal

So sensor resolution in lp/mm = (pixel diagonal/physical diagonal) x 0.5 = 72.01 lp/mm

Nikon D4 16.2Mp = 68.62 lp/mm

Nikon D800 36.3Mp = 102.33 lp/mm

PhaseOne P40 40Mp medium format = 83.15 lp/mm

PhaseOne IQ180 80Mp medium format = 96.12 lp/mm

Nikon D7000 16.2mp APS-C (DX) 4928×3264 pixels; 23.6×15.6mm dimensions  = 104.62 lp/mm

Canon 1D IV 16.1mp APS-H 4896×3264 pixels; 27.9×18.6mm dimensions  = 87.74 lp/mm

Taking the crackpot D800 as an example, that 102.33 lp/mm figure means that the sensor is capable of resolving 204.66 lines, or points of detail, per millimeter.

I say crackpot because:

  1. The Optical Low Pass “fights” against this high degree of resolving power
  2. This resolving power comes at the expense of S/N ratio
  3. This resolving power comes at the expense of diffraction
  4. The D800E is a far better proposition because it negates 1. above but it still leaves 2. & 3.
  5. Both sensors would purport to be “better” than even an IQ180 – newsflash – they ain’t; and not by a bloody country mile!  But the D800E is an exceptional sensor as far as 35mm format (36×24) sensors go.

A switch to a 40Mp medium format is BY FAR the better idea.

Before we go any further, we need a reality check:

In the scene we are shooting, and with the lens magnification we are using, can we actually “SEE” detail as small as 1/204th of a millimeter?

We know that detail finer than that exists all around us – that’s why we do macro/micro photography – but shooting a landscape with a 20mm wide angle where the nearest detail is 1.5 meters away ??

And let’s not forget the diffraction limit of the sensor and the incumbent reduction in depth of field that comes with 36Mp+ crammed into a 36mm x 24mm sensor area.

The D800 gives you something with one hand and takes it away with the other – I wouldn’t give the damn thing house-room!  Rant over………

Anyway, getting back to the matter at hand, we can now see that the MTF lp/mm values quoted by the likes of Nikon and Canon et al of 10 and 30 lp/mm bare little or no connectivity with the resolving power of their sensors – as I said in my previous post HERE – they are meaningless.

The information we are chasing after is all about the lens:

  1. How well does it transfer contrast because its contrast that allows us to “see” the lines of detail?
  2. How “sharp” is the lens?
  3. What is the “spread” of 1. and 2. – does it perform equally across its FoV (field of view) or is there a monstrous fall-off of 1. and 2. between 12 and 18mm from the center on an FX sensor?
  4. Does the lens vignette?
  5. What is its CA performance?

Now we can go to data sites on the net such as DXO Mark where we can find out all sorts of more meaningful data about our potential lens purchase performance.

But even then, we have to temper what we see because they do their testing using Imatest or something of that ilk, and so the lens performance data is influenced by sensor, ASIC and basic RAW file demosaicing and normalisation – all of which can introduce inaccuracies in the data; in other words they use camera images in order to measure lens performance.

The MTF 50 Standard

Standard MTF (MTF 100) charts do give you a good idea of the lens CONTRAST transfer function, as you may already have concluded. They begin by measuring targets with the highest degree of modulation – black to white – and then illustrate how well that contrast has been transferred to the image plane, measured along a corner radius of the frame/image circle.

MTF 1.0 (100%) left, MTF 0.5 (50%) center and MTF 0.1 (10%) right.

MTF 1.0 (100%) left, MTF 0.5 (50%) center and MTF 0.1 (10%) right.

As you can see, contrast decreases with falling transfer function value until we get to MTF 0.1 (10%) – here we can guess that if the value falls any lower than 10% then we will lose ALL “perceived” contrast in the image and the lines will become a single flat monotone – in other words we’ll drop to 9% and hit the Rayleigh Criterion.

It’s somewhat debatable whether or not sensors can actually discern a 10% value – as I mentioned earlier in this post, some favour a value more like 12% to 15% (0.12 to 0.15).

Now then, here’s the thing – what dictates the “sharpness” of edge detail in our images?  That’s right – EDGE CONTRAST.  (Don’t mistake this for overall image contrast!)

Couple that with:

  1. My well-used adage of “too much contrast is thine enemy”.
  2. “Detail” lies in midtones and shadows, and we want to see that detail, and in order to see it the lens has to ‘transfer’ it to the sensor plane.
  3. The only “visual” I can give you of MTF 100 would be something like power lines silhouetted against the sun – even then you would under expose the sun, so, if you like, MTF would still be sub 100.

Please note: 3. above is something of a ‘bastardisation’ and certain so-called experts will slag me off for writing it, but it gives you guys a view of reality – which is the last place some of those aforementioned experts will ever inhabit!

Hopefully you can now see that maybe measuring lens performance with reference to MTF 50 (50%, 0.5) rather than MTF 100 (100%, 1.0) might be a better idea.

Manufacturers know this but won’t do it, and the likes of Nikon can’t do it even if they wanted to because they use a damn calculator!

Don’t be trapped into thinking that contrast equals “sharpness” though; consider the two diagrams below (they are small because at larger sizes they make your eyes go funny!).

A lens can transfer full contrast but be unsharp.

A lens can have a high contrast transfer function but be unsharp.

A lens can have low contrast transmission (transfer function) but still be sharp.

A lens can have low contrast transfer function but still be sharp.

In the first diagram the lens has RESOLVED the same level of detail (the same lp/mm) in both cases, and at pretty much the same contrast transfer value; but the detail is less “sharp” on the right.

In the lower diagram the lens has resolved the same level of detail with the same degree of  “sharpness”, but with a much reduced contrast transfer value on the right.

Contrast is an AID to PERCEIVED sharpness – nothing more.

I actually hate that word SHARPNESS; and it’s a nasty word because it’s open to all sorts of misconceptions by the uninitiated.

A far more accurate term is ACUTANCE.

How Acutance effects perceived "sharpness" and is contrast independent.

How Acutance effects perceived “sharpness”.

So now hopefully you can see that LENS RESOLUTION is NOT the same as lens ACUTANCE (perceived sharpness..grrrrrr).

Seeing as it is possible to have a lens with a higher degree resolving power, but a lower degree of acutance you need to be careful – low acutance tends to make details blur into each other even at high contrast values; which tends to negate the positive effects of the resolving power. (Read as CHEAP LENS!).

Lenses need to have high acutance – they need to be sharp!  We’ve got enough problems trying to keep the sharpness once the sensor gets hold of the image, without chucking it a soft one in the first place – and I’ll argue this point with the likes of Mr. Rockwell until the cows have come home!

Things We Already Know

We already know that stopping down the aperture increases Depth of Field; and we already know that we can only do this to a certain degree before we start to hit diffraction.

What does increasing DoF do exactly; it increases ACUTANCE is what it does – exactly!

Yes it gives us increased perceptual sharpness of parts of the subject in front and behind the plane of sharp focus – but forget that bit – we need to understand that the perceived sharpness/acutance of the plane of focus increases too, until you take things too far and go beyond the diffraction limit.

And as we already know, that diffraction limit is dictated by the size of photosites/pixels in the sensor – in other words, the sensor resolution.

So the diffraction limit has two effects on the MTF of a lens:

  1. The diffraction limit changes with sensor resolution – you might get away with f14 on one sensor, but only f9 on another.
  2. All this goes “out the window” if we talk about crop-sensor cameras because their sensor dimensions are different.

We all know about “loss of wide angles” with crop sensors – if we put a 28mm lens on an FX body and like the composition but then we switch to a 1.5x crop body we then have to stand further away from the subject in order to achieve the same composition.

That’s good from a DoF PoV because DoF for any given aperture increases with distance; but from a lens resolving power PoV it’s bad – that 50 lp/mm detail has just effectively dropped to 75 lp/mm, so it’s harder for the lens to resolve it, even if the sensors resolution is capable of doing so.

There is yet another way of quantifying MTF – just to confuse the issue for you – and that is line pairs per frame size, usually based on image height and denoted as lp/IH.

Imatest uses MTF50 but quotes the frequencies not as lp/mm, or even lp/IH; but in line widths per image height – LW/IH!

Alas, there is no single source of the empirical data we need in order to evaluate pure lens performance anymore.  And because the outcome of any particular lens’s performance in terms of acutance and resolution is now so inextricably intertwined with that of the sensor behind it, then you as lens buyers, are left with a confusing myriad of various test results all freely available on the internet.

What does Uncle Andy recommend? – well a trip to DXO Mark is not a bad starting point all things considered, but I do strongly suggest that you take on board the information I’ve given you here and then scoot over to the DXO test methodology pages HERE and read them carefully before you begin to examine the data and draw any conclusions from it.

But do NOT make decisions just on what you see there; there is no substitute for hands-on testing with your camera before you go and spend your hard-earned cash.  Proper testing and evaluation is not as simple as you might think, so it’s a good idea to perhaps find someone who knows what they are doing and is prepared to help you out.   Do NOT ask the geezer in the camera shop – he knows bugger all about bugger all!

Do Sensors Out Resolve Lenses?

Well, that’s the loaded question isn’t it – you can get very poor performance from what is ostensibly a superb lens, and to a degree vice versa.

It all depends on what you mean by the question, because in reality a sensor can only resolve what the lens chucks at it.

If you somehow chiseled the lens out of your iPhone and Sellotaped it to your shiny new 1DX then I’m sure you’d notice that the sensor did indeed out resolve the lens – but if you were a total divvy who didn’t know any better then in reality all you’d be ware of is that you had a crappy image – and you’d possibly blame the camera, not the lens – ‘cos it took way better pics on your iPhone 4!

There are so many external factors that effect the output of a lens – available light, subject brightness range, angle of subject to the lens axis to name but three.  Learning how to recognise these potential pitfalls and to work around them is what separates a good photographer from an average one – and by good I mean knowledgeable – not necessarily someone who takes pics for a living.

I remember when the 1DX specs were first ‘leaked’ and everyone was getting all hot and bothered about having to buy the new Canon glass because the 1DX was going to out resolve all Canons old glass – how crackers do you need to be nowadays to get a one way ticket to the funny farm?

If they were happy with the lens’s optical performance pre 1DX then that’s what they would get post 1DX…duh!

If you still don’t get it then try looking at it this way – if lenses out resolve your sensor then you are up “Queer Street” – what you see in the viewfinder will be far better than the image that comes off the sensor, and you will not be a happy camper.

If on the other hand, our sensors have the capability to resolve more lines per millimeter than our lenses can throw at them, and we are more than satisfied with our lenses resolution and acutance, then we would be in a happy place, because we’d be wringing the very best performance from our glass – always assuming we know how to ‘drive the juggernaut’  in the first place!

Become a Patron!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Lens Performance

I have a friend – yes, a strange concept I know, but I do have some – we’ll call him Steve.

Steve is a very talented photographer – when he’ll give himself half a chance; but impatience can sometimes get the better of him.

He’ll have a great scene in front of him but then he’ll forget things such as any focus or exposure considerations the scene demands, and the resulting image will be crap!

Quite often, a few of Steve’s character flaws begin to emerge at this juncture.

Firstly, Steve only remembers his successes; this leads to the unassailable ‘fact’ that he couldn’t possibly have ‘screwed up’.

So now we can all guess the conclusive outcome of that scenario can’t we……..that’s right; his camera gear has fallen short in the performance department.

Clairvoyance department would actually be more accurate!

So this ‘error in his camera system’ needs to be stamped on – hard and fast!

This leads to Steve embarking on a massive information-gathering exercise from various learned sources on ‘that there inter web’ – where another of Steve’s flaws shows up; that of disjointed speed reading…..

The terrifying outcome of these situations usually concludes with Steve’s confident affirmation that some piece of his equipment has let him down; not just by becoming faulty but sometimes, more worryingly by initial design.

These conclusions are always arrived at in the same manner – the various little snippets of truth and random dis-associated facts that Steve gathers, all get forcibly hammered into some hellish, bastardized ‘factual’ jigsaw in his head.

There was a time when Steve used to ask me first, but he gave up on that because my usual answer contravened the outcome of his first mentioned character flaw!

Lately one of Steve’s biggest peeves has been the performance of one or two of his various lenses.

Ostensibly you’ll perhaps think there’s nothing wrong in that – after all, the image generated by the camera is only as good as the lens used to gather the light in the scene – isn’t it?

 

But there’s a potential problem, and it  lies in what evidence you base your conclusions on……………

 

For Steve, at present, it’s manufacturers MTF charts, and comparisons thereof, coupled with his own images as they appear in Lightroom or Photoshop ACR.

Again, this might sound like a logical methodology – but it isn’t.

It’s flawed on so many levels.

 

The Image Path from Lens to Sensor

We could think of the path that light travels along in order to get to our camera sensor as a sort of Grand National horse race – a steeplechase for photons!

“They’re under starters orders ladies and gentlemen………………and they’re off!”

As light enters the lens it comes across it’s first set of hurdles – the various lens elements and element groups that it has to pass through.

Then they arrive at Becher’s Brook – the aperture, where there are many fallers.

Carefully staying clear of the inside rail and being watchful of any lose photons that have unseated their riders at Becher’s we move on over Foinavon – the rear lens elements, and we then arrive at the infamous Canal Turn – the Optical Low Pass filter; also known as the Anti-alias filter.

Crashing on past the low pass filter and on over Valentines only the bravest photons are left to tackle the the last big fence on their journey – The Chair – our camera sensor itself.

 

Okay, I’ll behave myself now, but you get the general idea – any obstacle that lies in the path of light between the front surface of our lens and the photo-voltaic surface of our sensor is a BAD thing.

Andy Astbury,Wildlife in Pixels,lens,resolution,optical path,sharpness,resolution,imaging pathway

The various obstacles to light as it passes through a camera (ASIC = Application Specific Integrated Circuit)

The problems are many, but let’s list a few:

  1. Every element reduces the level of transmitted light.
  2. Because the lens elements have curved surfaces, light is refracted or bent; the trick is to make all wavelengths of light refract to the same degree – failure results in either lateral or longitudinal chromatic aberration – or worse still, both.
  3. The aperture causes diffraction – already discussed HERE

We have already seen in that same previous post on Sensor Resolution that the number of megapixels can effect overall image quality in terms of overall perceived sharpness due to pixel-pitch, so all things considered, using photographs of any 3 dimensional scene is not always a wise method of judging lens performance.

And here is another reason why it’s not a good idea – the effect on image quality/perceived lens resolution of anti-alias, moire or optical low pass filter; and any other pre-filtering.

I’m not going to delve into the functional whys and wherefores of an AA filter, save to say that it’s deemed a necessary evil on most sensors, and that it can make your images take on a certain softness because it basically adds blur to every edge in the image projected by the lens onto your sensor.

The reasoning behind it is that it stops ‘moire patterning’ in areas of high frequency repeated detail.  This it does, but what about the areas in the image where its effect is not required – TOUGH!

 

Many photographers have paid service suppliers for AA filter removal just to squeeze the last bit of sharpness out of their sensors, and Nikon of course offer the ‘sort of AA filter-less’ D800E.

Side bar note:  I’ve always found that with Nikon cameras at least, the pro-body range seem to suffer a lot less from undesirable AA filtration softening than than their “amateur” and “semi pro” bodies – most notably the D2X compared to a D200, and the D3 compared to the D700 & D300.  Perhaps this is due to a ‘thinner’ filter, or a higher quality filter – I don’t know, and to be honest I’ve never had the desire to ‘poke Nikon with a sharp stick’ in order to find out.

 

Back in the days of film things were really simple – image resolution was governed by just two things; lens resolution and film resolution:

1/image resolution = 1/lens resolution + 1/film resolution

Film resolution was a variable depending on the Ag Halide distribution and structure,  dye coupler efficacy within the film emulsion, and the thickness of the emulsion or tri-pack itself.

But today things are far more complicated.

With digital photography we have all those extra hurdles to jump over that I mentioned earlier, so we end up with a situation whereby:

1/Image Resolution = 1/lens resolution + 1/AA filter resolution + 1/sensor resolution + 1/image processor/imaging ASIC resolution

Steve is chasing after lens resolution under the slightly misguided idea the resolution equates to sharpness, which is not strictly true; but he is basing his conception of lens sharpness based on the detail content and perceived detail ‘sharpness’ of his  images; which are ‘polluted’ if you like by the effects of the AA filter, sensor and imaging ASIC.

What it boils down to, in very simplified terms, is this:

You can have one particular lens that, in combination with one camera sensor produces a superb image, but in combination with another sensor produces a not-quite-so-superb image!

On top of the “fixed system” hurdles I’ve outlined above, we must not forget the potential for errors introduced by lens-to-body mount flange inaccuracies, and of course, the big elephant-in-the-room – operator error – ehh Steve.

So attempting to quantify the pure ‘optical performance’ of a lens using your ‘taken images’ is something of a pointless exercise; you cannot see the pure lens sharpness or resolution unless you put the lens on a fully equipped optical test bench – and how many of us have got access to one of those?

The truth of the matter is that the average photographer has to trust the manufacturers to supply accurately put together equipment, and he or she has to assume that all is well inside the box they’ve just purchased from their photographic supplier.

But how can we judge a lens against an assumed standard of perfection before we part with our cash?

A lot of folk, including Steve – look at MTF charts.

 

The MTF Chart

Firstly, MTF stands for Modulation Transfer Function – modu-what I hear your ask!

OK – let’s deal with the modulation bit.  Forget colour for a minute and consider yourself living in a black & white world.  Dark objects in a scene reflect few photons of light – ’tis why the appear dark!  Conversely, bright objects reflect loads of the little buggers, hence these objects appear bright.

Imagine now that we are in a sealed room totally impervious to the ingress of any light from outside, and that the room is painted matte white from floor to ceiling – what is the perceived colour of the room? Black is the answer you are looking for!

Now turn on that 2 million candle-power 6500k searchlight in the corner.  The split second before your retinas melted, what was the perceived colour of the room?

Note the use of the word ‘perceived’ – the actual colour never changed!

The luminosity value of every surface in the room changed from black to white/dark to bright – the luminosity values MODULATED.

Now back in reality we can say that a set of alternating black and white lines of equal width and crisp clean edges represent a high degree of contrast, and therefore tonal modulation; and the finer the lines the higher is the modulation frequency – which we measure in lines per millimeter (lpmm).

A lens takes in a scene of these alternating black and white lines and, just like it does with any other scene, projects it into an image circle; in other words it takes what it sees in front of it and ‘transfers’ the scene to the image circle behind it.

With a bit of luck and a fair wind this image circle is being projected sharply into the focal plane of the lens, and hopefully the focal plane matches up perfectly with the plane of the sensor – what used to be refereed to as the film plane.

The efficacy with which the lens carries out this ‘transfer’ in terms of maintaining both the contrast ratio of the modulated tones and the spatial separation of the lines is its transfer function.

So now you know what MTF stands for and what it means – good this isn’t it!

 

Let’s look at an MTF chart:

Nikon 500mm f4 MTF chart

Nikon 500mm f4 MTF chart

Now what does all this mean?

 

Firstly, the vertical axis – this can be regarded as that ‘efficacy’ I mentioned above – the accuracy of tonal contrast and separation reproduction in the projected image; 1.0 would be perfect, and 0 would be crappier than the crappiest version of a crap thing!

The horizontal axis – this requires a bit of brain power! It is scaled in increments of 5 millimeters from the lens axis AT THE FOCAL PLANE.

The terminus value at the right hand end of the axis is unmarked, but equates to 21.63mm – half the opposing corner-to-corner dimension of a 35mm frame.

Now consider the diagram below:

Andy Astbury,image circle,photography,frame,full frame,dimensions,radial,

The radial dimensions of the 35mm format.

These are the radial dimensions, in millimeters, of a 35mm format frame (solid black rectangle).

The lens axis passes through the center axis of the sensor, so the radii of the green, yellow and dashed circles correspond to values along the horizontal axis of an MTF chart.

Let’s simplify what we’ve learned about MTF axes:

Andy Astbury,image circle,photography,frame,full frame,dimensions,radial,

MTF axes hopefully made simpler!

Now we come to the information data plots; firstly the meaning of Sagittal & Meridional.   From our perspective in this instance I find it easier for folk to think of them as ‘parallel to’ and ‘at right angles to’ the axis of measurement, though strictly speaking Meridional is circular and Sagittal is radial.

This axis of measurement is from the lens/film plane/sensor center to the corner of a 35mm frame – in other words, along that 21.63mm radius.

Andy Astbury,image circle,photography,frame,full frame,dimensions,radial,

The axis of MTF measurement and the relative axial orientation of Sagittal & Meridional lines. NOTE: the target lines are ONLY for illustration.

Separate measurements are taken for each modulation frequency along the entire measurement axis:

Andy Astbury,image circle,photography,frame,full frame,dimensions,radial,

Thin Meridional MTF measurement. (They should be concentric circles but I can’t draw concentric circles!).

Let’s look at that MTF curve for the 500m f4 Nikon together with a legend of ‘sharpness’ – the 300 f2.8:

MTF chart,Andy Astbury,lens resolution

Nikon MTF comparison between the 500mm f4 & 300mm f2.8

Nikon say on their website that they measure MTF at maximum aperture, that is, wide open; so the 300mm chart is for an aperture of f2.8 (though they don’t say so) and the 500mm is for an f4 aperture – which they do specify on the chart – don’t ask me why ‘cos I’ve no idea.

As we can see, the best transfer values for the two lenses (and all other lenses) is 10 lines per millimeter, and generally speaking sagittal orientation usually performs slightly better than meridional, but not always.

10 lpmm is always going to give a good transfer value because its very coarse and represents a lower frequency of detail than 30 lpmm.

Funny thing, 10 lines per millimeter is 5 line pairs per millimeter – and where have we heard that before? HERE – it’s the resolution of the human eye at 25 centimeters.

 

Another interesting thing to bare in mind is that, as the charts clearly show, better transfer values occur closer to the lens axis/sensor center, and that performance falls as you get closer to the frame corners.

This is simply down to the fact that your are getting closer to the inner edge of the image circle (the dotted line in the diagrams above).  If manufacturers made lenses that threw a larger image circle then corner MTF performance would increase – it can be done – that’s the basis upon which PCE/TS lenses work.

One way to take advantage of center MTF performance is to use a cropped sensor – I still use my trusty D2Xs for a lot of macro work; not only do I get the benefit of center MTF performance across the majority of the frame but I also have the ability to increase the lens to subject distance and get the composition I want, so my depth of field increases slightly for any given aperture.

Back to the matter at hand, here’s my first problem with the likes of Nikon, Canon etc:  they don’t specify the lens-to-target distance. A lens that gives a transfer value of 9o% plus on a target of 10 lpmm sagittal at 2 meters distance is one thing; one that did the same but at 25 meters would be something else again.

You might look at the MTF chart above and think that the 300mm f2.8 lens is poor on a target resolution of  30 lines per millimeter compared to the 500mm, but we need to temper that conclusion with a few facts:

  1. A 300mm lens is a lot wider in Field of View (FoV) than a 500mm so there is a lot more ‘scene width’ being pushed through the lens – detail is ‘less magnified’.
  2. How much ‘less magnified’ –  40% less than at 500mm, and yet the 30 lpmm transfer value is within 6% to 7% that of the 500mm – overall a seemingly much better lens in MTF terms.
  3. The lens is f2.8 – great for letting light in but rubbish for everything else!

Most conventional lenses have one thing in common – their best working aperture for overall image quality is around f8.

But we have to counter balance the above with the lack of aforementioned target distance information.  The minimum focus distances for the two comparison lenses are 2.3 meters and 4.0 meters respectively so obviously we know that the targets are imaged and measured at vastly different distances – but without factual knowledge of the testing distances we cannot really say that one lens is better than the other.

 

My next problem with most manufacturers MTF charts is that the values are supplied ‘a la white light’.

I mentioned earlier – much earlier! – that lens elements refracted light, and the importance of all wavelengths being refracted to the same degree, otherwise we end up with either lateral or longitudinal chromatic aberration – or worse still – both!

Longitudinal CA will give us different focal planes for different colours contained within white light – NOT GOOD!

Lateral CA gives us the same plane of focus but this time we get lateral shifts in the red, green and blue components of the image, as if the 3 colour channels have come out of register – again NOT GOOD!

Both CA types are most commonly seen along defined edges of colour and/or tone, and as such they both effect transferred edge definition and detail.

So why do manufacturers NOT publish this information – there is to my knowledge only one that does – Schneider (read ‘proper lens’).

They produce some very meaningful MTF data for their lenses with modulation frequencies in excess of 90 to 150 lpmm; separate R,G & B curves; spectral weighting variations for different colour temperatures of light and all sorts of other ‘geeky goodies’ – I just love it all!

 

SHAME ON YOU NIKON – and that goes for Canon and Sigma just as much.

 

So you might now be asking WHY they don’t publish the data – they must have it – are they treating us like fools that wouldn’t be able to understand it; OR – are they trying to hide something?

You guys think what you will – I’m not accusing anyone of anything here.

But if they are trying to hide something then that ‘something’ might not be what you guys are thinking.

What would you think if I told you that if you were a lens designer you could produce an MTF plot with a calculator – ‘cos you can, and they do!

So, in a nutshell, most manufacturers MTF charts as published for us to see are worse than useless.  We can’t effectively use them to compare one lens against another because of missing data; we can’t get an idea of CA performance because of missing red, green and blue MTF curves; and finally we can’t even trust that the bit of data they do impart is even bloody genuine.

Please don’t get taken in by them next time you fancy spending money on glass – take your time and ask around – better still try one; and try it on more than 1 camera body!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Pixel Resolution

What do we mean by Pixel Resolution?

Digital images have two sets of dimensions – physical size or linear dimension (inches, centimeters etc) and pixel dimensions (long edge & short edge).

The physical dimensions are simple enough to understand – the image is so many inches long by so many inches wide.

Pixel dimension is straightforward too – ‘x’ pixels long by ‘y’ pixels wide.

If we divide the physical dimensions by the pixel dimensions we arrive at the PIXEL RESOLUTION.

Let’s say, for example, we have an image with pixel dimensions of 3000 x 2400 pixels, and a physical, linear dimension of 10 x 8 inches.

Therefore:

3000 pixels/10 inches = 300 pixels per inch, or 300PPI

and obviously:

2400 pixels/8 inches = 300 pixels per inch, or 300PPI

So our image has a pixel resolution of 300PPI.

 

How Does Pixel Resolution Influence Image Quality?

In order to answer that question let’s look at the following illustration:

Andy Astbury,pixels,resolution,dpi,ppi,wildlife in pixels

The number of pixels contained in an image of a particular physical size has a massive effect on image quality. CLICK to view full size.

All 7 square images are 0.5 x 0.5 inches square.  The image on the left has 128 pixels per 0.5 inch of physical dimension, therefore its PIXEL RESOLUTION is 2 x 128 PPI (pixels per inch), or 256PPI.

As we move from left to right we halve the number of pixels contained in the image whilst maintaining the physical size of the image – 0.5″ x 0.5″ – so the pixels in effect become larger, and the pixel resolution becomes lower.

The fewer the pixels we have then the less detail we can see – all the way down to the image on the right where the pixel resolution is just 4PPI (2 pixels per 0.5 inch of edge dimension).

The thing to remember about a pixel is this – a single pixel can only contain 1 overall value for hue, saturation and brightness, and from a visual point of view it’s as flat as a pancake in terms of colour and tonality.

So, the more pixels we can have between point A and point B in our image the more variation of colour and tonality we can create.

Greater colour and tonal variation means we preserve MORE DETAIL and we have a greater potential for IMAGE SHARPNESS.

REALITY

So we have our 3 variables; image linear dimension, image pixel dimension and pixel resolution.

In our typical digital work flow the pixel dimension is derived from the the photosite dimension of our camera sensor – so this value is fixed.

All RAW file handlers like Lightroom, ACR etc;  all default to a native pixel resolution of 300PPI. * (this 300ppi myth annoys the hell out of me and I’ll explain all in another post).

So basically the pixel dimension and default resolution SET the image linear dimension.

If our image is destined for PRINT then this fact has some serious ramifications; but if our image is destined for digital display then the implications are very different.

 

Pixel Resolution and Web JPEGS.

Consider the two jpegs below, both derived from the same RAW file:

Andy Astbury,pixels,resolution,dpi,ppi,Wildlife in Pixels

European Adder – 900 x 599 pixels with a pixel resolution of 300PPI

European Adder - 900 x 599 pixels with a pixel resolution of 72PPI

European Adder – 900 x 599 pixels with a pixel resolution of 72PPI

In order to illustrate the three values of linear dimension, pixel dimension and pixel resolution of the two images let’s look at them side by side in Photoshop:

Andy Astbury,photoshop,resolution,pixels,ppi,dpi,wildlife in pixels,image size,image resolution

The two images opened in Photoshop – note the image size dialogue contents – CLICK to view full size.

The two images differ in one respect – their pixel resolutions.  The top Adder is 300PPI, the lower one has a resolution of 72PPI.

The simple fact that these two images appear to be exactly the same size on this page means that, for DIGITAL display the pixel resolution is meaningless when it comes to ‘how big the image is’ on the screen – what makes them appear the same size is their identical pixel dimensions of 900 x 599 pixels.

Digital display devices such as monitors, ipads, laptop monitors etc; are all PIXEL DIMENSION dependent.  The do not understand inches or centimeters, and they display images AT THEIR OWN resolution.

Typical displays and their pixel resolutions:

  • 24″ monitor = typically 75 to 95 PPI
  • 27″ iMac display = 109 PPI
  • iPad 3 or 4 = 264 PPI
  • 15″ Retina Display = 220 PPI
  • Nikon D4 LCD = 494 PPI

Just so that you are sure to understand the implication of what I’ve just said – you CAN NOT see your images at their NATIVE 300 PPI resolution when you are working on them.  Typically you’ll work on your images whilst viewing them at about 1/3rd native pixel resolution.

Yes, you can see 2/3rds native on a 15″ MacBook Pro Retina – but who the hell wants to do this – the display area is minuscule and its display gamut is pathetically small. 😉

Getting back to the two Adder images, you’ll notice that the one thing that does change with pixel resolution is the linear dimensions.

Whilst the 300 PPI version is a tiny 3″ x 2″ image, the 72 PPI version is a whopping 12″ x 8″ by comparison – now you can perhaps understand why I said earlier that the implications of pixel resolution for print are fundamental.

Just FYI – when I decide I’m going to create a small jpeg to post on my website, blog, a forum, Flickr or whatever – I NEVER ‘down sample’ to the usual 72 PPI that get’s touted around by idiots and no-nothing fools as “the essential thing to do”.

What a waste of time and effort!

Exporting a small jpeg at ‘full pixel resolution’ misses out the unnecessary step of down sampling and has an added bonus – anyone trying to send the image direct from browser to a printer ends up with a print the size of a matchbox, not a full sheet of A4.

It won’t stop image theft – but it does confuse ’em!

I’ve got a lot more to say on the topic of resolution and I’ll continue in a later post, but there is one thing related to PPI that is my biggest ‘pet peeve’:

 

PPI and DPI – They Are NOT The Same Thing

Nothing makes my blood boil more than the persistent ‘mix up’ between pixels per inch and dots per inch.

Pixels per inch is EXACTLY what we’ve looked at here – PIXEL RESOLUTION; and it has got absolutely NOTHING to do with dots per inch, which is a measure of printer OUTPUT resolution.

Take a look inside your printer driver; here we are inside the driver for an Epson 3000 printer:

Andy Astbury,printer,dots per inch,dpi,pixels per inch,ppi,photoshop,lightroom,pixel resolution,output resoloution

The Printer Driver for the Epson 3000 printer. Inside the print settings we can see the output resolutions in DPI – Dots Per Inch.

Images would be really tiny if those resolutions were anything to do with pixel density.

It surprises a lot of people when they come to the realisation that pixels are huge in comparison to printer dots – yes, it can take nearly 400 printer dots (20 dots square) to print 1 square pixel in an image at 300 PPI native.

See you in my next post!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.