Lumenzia for Wildlife

The Lumenzia Photoshop extension

Yet more on the usefulness of the Lumenzia Photoshop extension, the short cut to great looking images of all types and styles.

I had an email from client and blog follower David Sparks after my last post about this useful mighty Photoshop tool.

He sent these before and after rail shots:

20141002-_D4S6303

Before adding Lumenzia. Click for larger view.

After adding Lumenzia

After adding Lumenzia. Click for larger view.

difference

Comparison overlay – see how the left side of the image has that extra presence – and that’s just with the click of a couple of buttons in the Lumenzia GUI. Click to view larger.

Here is what David had to say in his email:

Andy, here is a before and after.  Processing was much, much faster than usual, using Lumenzia.

Thanks for bringing it to my attention….I’m working my way through your Image Processing in LR4 & Photoshop + LR5 bundle and enjoying it very much.

And as my friend and blog follower Frank Etchells put it:

Excellent recommendation this Andy. Bought it first time from your previous posting… at just over £27 it’s marvellous :)

What gets me puzzled is the fact that these Lumenzia posts have had over 500 separate page views in the last few days but less then 3% of you have bought it – WTF are you guys waiting for…

Get it BOUGHT – NOW – HERE

UPDATE: Greg Benz (the plugin author) has launched a comprehensive Lumenzia training course – see my post here for more information.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Lumenzia – Not Just for Landscapes

Luminosity Masking is NOT just for landscape photographs – far from it.

But most folk miss the point of luminosity masking because they think it’s difficult and tedious.

The point, as I always see it, is that luminosity masking allows you to make dramatic but subtle changes and enhancements to your image with what are actually VERY fast and crude “adjustments”.

This in reality means that luminosity masking is FAST – and way faster than trying to do “localised” adjustments.  But the creation of the masks and choosing which one to use is what crippled the “ease factor” for most.

But with this new Lumenzia extension is so snappy and quick at showing you the different masks that, if you know what area of the image you want to adjust, the whole process takes SECONDS.

Let’s look at a White-tailed Eagle taken just 15 days ago:

Straight off the 1Dx it looks like this:

RAW unprocessed .CR2 file

RAW unprocessed .CR2 file (CLICK to view in new window)

Inside the Develop Module of Lightroom 5 it looks like:

camera

RAW unprocessed – (CLICK to view in new window)

A few tweaks later and it looks like:

Lr5adjust

Tweaks are what you can see in the Basics Panel + CamCal set to Neutral, and Chroma Noise removal in the Lens Corrections Panel is turned ON – (CLICK to view in new window)

Sending THIS adjusted image to Photoshop:

ps1

(CLICK to view in new window)

All I want to do is give a “lift” to the darker tones in the bird; under the wings, and around the side of head, legs and tail.

Using a BRUSH to do the job is all fine ‘n dandy BUT, you would be creating a localised adjustment that’s all-encompassing from a tonal perspective; all tones that fell under the brush get adjusted by the same amount.

A luminosity mask, or indeed ANY pixel-based mask is exactly what it says it is – a mask full of pixels. And those pixels are DERIVED from the real pixels in your image.  But the real beauty is that those pixels will be anywhere from 1% to 100% selected, or not selected at all.

Where they are 100% selected they are BLACK, and any adjustment you make BEHIND that mask will NOT be visible.

Pixels that are NOT selected will be WHITE, and your adjustment will show fully.

But where the pixels are between 1% and 99% selected they will appear as 1% GREY to 99% grey and so will show or hide variation of said adjustment by the same amounts…got it?

The Lumenzia D4 mask looks like it’ll do the job I want:

(CLICK to view in new window)

Lumenzia D4 mask (CLICK to view in new window)

Click the image to view larger – look at the subtle selections under those wings – try making that selection any other way in under 2 seconds – you’ve got no chance!

The “lift” I want to make in those WHITER areas of the mask is best done with a Curves Adjustment layer:

Select "Curve" in the Lumenzia GUI - (CLICK to view in new window)

Select “Curve” in the Lumenzia GUI – (CLICK to view in new window)

So hit the Curve button and voilà:

The Lumenzia D4 mask is now applied to Curves Adjustment Layer - (CLICK to view in new window)

The Lumenzia D4 mask is now applied to Curves Adjustment Layer – (CLICK to view in new window)

You can see in the image above that I’ve made a very rough upwards deflection of the curve to obtain an effective but subtle improvement to those under-wing areas etc. that I was looking to adjust.

The total time frame from opening the image in Photoshop to now is about 20 seconds!  Less time than the Lightroom 5 adjustments took…

And to illustrate the power of that Lumenzia D4 Luminosity mask, and the crudity of the adjustment I made, here’s the image WITHOUT THE MASK:

The effect of the luminosity mask is best illustrated by "hiding" it - bloody hell, turn it back on ! - (CLICK to view in new window).

The effect of the luminosity mask is best illustrated by “hiding” it – bloody hell, turn it back on ! – (CLICK to view in new window).

And at full resolution you can see the subtleties of the adjustment on the side of the head:

ll+lum

With Lumenzia (left) and just the Lightroom 5 processing (right) – (CLICK to view in new window).

If you want to get the best from your images AND you don’t want to spend hours trying to do so, then Lumenzia will seriously help you.

Clicking this link HERE to buy Lumenzia doesn’t mean it costs you any more than if you buy it direct from the developer.  But it does mean that I get a small remuneration from the developer as a commission which in turn supports my blog.  Buying Lumenzia is a total no-brainer so please help support this blog by buying it via these links – many thanks folks.

UPDATE June 2018: Greg Benz (the plugin author) has launched a comprehensive Lumenzia training course – see my post here for more information.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Colormunki Photo Update

Colormunki Photo Update

Both my MacPro and non-retina iMac used to be on Mountain Lion, or OSX 10.8, and nope, I never updated to Mavericks as I’d heard so many horror stories, and I basically couldn’t be bothered – hey, if it ain’t broke don’t fix it!

But, I wanted to install CapOne Pro on the iMac for the live-view capabilities – studio product shot lighting training being the biggest draw on that score.

So I downloaded the 60 day free trial, and whadyaknow, I can’t install it on anything lower than OSX 10.9!

Bummer thinks I – and I upgrade the iMac to OSX 10.10 – YOSEMITE.

Now I was quite impressed with the upgrade and I had no problems in the aftermath of the Yosemite installation; so after a week or so muggins here decided to do the very same upgrade to his late 2009 Mac Pro.

OHHHHHHH DEARY ME – what a pigs ear of a move that turned out to be!

Needless to say, I ended up making a Yosemite boot installer and setting up on a fresh HDD.  After re-installing all the necessary software like Lightroom and Photoshop, iShowU HD Pro and all the other crap I use, the final task arrived of sorting colour management out and profiling the monitors.

So off we trundle to X-Rite and download the Colormunki Photo software – v1.2.1.  I then proceeded to profile the 2 monitors I have attached to the Mac Pro.

Once the colour measurement stage got underway I started to think that it was all looking a little different and perhaps a bit more comprehensive than it did before.  Anyway, once the magic had been done and the profile saved I realised that I had no way of checking the new profile against the old one – t’was on the old hard drive!

So I go to the iMac and bring up the Colormunki software version number – 1.1.1 – so I tell the software to check for updates – “non available” came the reply.

Colormunki software downloads

Colormunki software downloads

Colormunki v1.2.1 for Yosemite

Colormunki v1.2.1 for Yosemite

So I download 1.2.1, remove the 1.1.1 software and restart the iMac as per X-Rites instructions, and then install said 1.2.1 software.

Once installation was finished I profiled the iMac and found something quite remarkable!

Check out the screen grab below:

iMac screen profile comparrisons.

iMac screen profile comparisons. You need to click this to open full size in a new tab.

On the left is a profile comparison done in the ColourThink 2-D grapher, and on the right one done in the iMacs own ColourSynch Utility.

In the left image the RED gamut projection is the new Colormunki v1.2.1 profile. This also corresponds to the white mesh grid in the Colour Synch image.

Now the smaller WHITE gamut projection was produced with an i1Pro 2 using the maximum number of calibration colours; this corresponds to the coloured projection in the Coloursynch window image.

The GREEN gamut projection is the supplied iMac system monitor profile – which is slightly “pants” due to its obvious smaller size.

What’s astonished me is that the Colormunki Photo with the new software v1.2.1 has produced a larger gamut for the display than the i1 Pro 2 did under Mountain Lion OSX 10.8

I’ve only done a couple of test prints via softproofing in Lightroom, but so far the new monitor profile has led to a small improvement in screen-to-print matching of the some subtle yellow-green and green-blue mixes, aswell as those yellowish browns which I often found tricky to match when printing from the iMac.

So, my advice is this, if you own a Colormunki Photo and have upgraded your iMac to Yosemite CHECK your X-Rite software version number. Checking for updates doesn’t always work, and the new 1.2.1 Mac version is well worth the trouble to install.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Camera Calibration

Custom Camera Calibration

The other day I had an email fall into my inbox from leading UK online retailer…whose name escapes me but is very short… that made my blood pressure spike.  It was basically offering me 20% off the cost of something that will revolutionise my photography – ColorChecker Passport Camera Calibration Profiling software.

I got annoyed for two reasons:

  1. Who the “f***” do they think they’re talking to sending ME this – I’ve forgotten more about this colour management malarkey than they’ll ever know….do some customer research you idle bastards and save yourselves a mauling!
  2. Much more importantly – tens of thousands of you guys ‘n gals will get the same email and some will believe the crap and buy it – and you will get yourselves into the biggest world of hurt imaginable!

Don’t misunderstand me, a ColorChecker Passport makes for a very sound purchase indeed and I would not like life very much if I didn’t own one.  What made me seethe is the way it’s being marketed, and to whom.

Profile all your cameras for accurate colour reproduction…..blah,blah,blah……..

If you do NOT fully understand the implications of custom camera calibration you’ll be in so much trouble when it comes to processing you’ll feel like giving up the art of photography.

The problems lie in a few areas:

First, a camera profile is a SENSOR/ASIC OUTPUT profile – think about that a minute.

Two things influence sensor/asic output – ISO and lens colour shift – yep. that’s right, no lens is colour-neutral, and all lenses produce colour shifts either by tint or spectral absorption. And higher ISO settings usually produce a cooler, bluer image.

Let’s take a look at ISO and its influence on custom camera calibration profiling – I’m using a far better bit of software for doing the job – “IN MY OPINION” – the Adobe DNG Profile Editor – free to all MAC download and Windows download – but you do need the ColorChecker Passport itself!

I prefer the Adobe product because I find the ColorChecker software produced camera calibration profiles there were, well, pretty vile in terms of increased contrast especially; not my cup of tea at all.

camera calibration, Andy Astbury, colour, color management

5 images shot at 1 stop increments of ISO on the same camera/lens combination.

Now this is NOT a demo of software – a video tutorial of camera profiling will be on my next photography training video coming sometime soon-ish, doubtless with a somewhat verbose narrative explaining why you should or should not do it!

Above, we have 5 images shot on a D4 with a 24-70 f2.8 at 70mm under a consistent overcast daylight at 1stop increments of ISO between 200 and 3200.

Below, we can see the resultant profile and distribution of known colour reference points on the colour wheel.

camera calibration, Andy Astbury, colour, color management

Here’s the 200 ISO custom camera calibration profile – the portion of interest to us is the colour wheel on the left and the points of known colour distribution (the black squares and circled dot).

Next, we see the result of the image shot at 3200 ISO:

camera calibration, Andy Astbury, colour, color management

Here’s the result of the custom camera profile based on the shot taken at 3200 ISO.

Now let’s super-impose one over t’other – if ISO doesn’t matter to a camera calibration profile then we should see NO DIFFERENCE………….

camera calibration, Andy Astbury, colour, color management

The 3200 ISO profile colour distribution overlaid onto the 200 ISO profile colour distribution – it’s different and they do not match up.

……..well would you bloody believe it!  Embark on custom camera calibration  profiling your camera and then apply that profile to an image shot with the same lens under the same lighting conditions but at a different ISO, and your colours will not be right.

So now my assertions about ISO have been vindicated, let’s take a look at skinning the cat another way, by keeping ISO the same but switching lenses.

Below is the result of a 500mm f4 at 1000 ISO:

camera calibration, Andy Astbury, colour, color management

Profile result of a 500mm f4 at 1000 ISO

And below we have the 24-70mm f2.8 @ 70mm and 1000 ISO:

camera calibration, Andy Astbury, colour, color management

Profile result of a 24-70mm f2.8 @ 70mm at 1000 ISO

Let’s overlay those two and see if there’s any difference:

camera calibration, Andy Astbury, colour, color management

Profile results of a 500mm f4 at 1000 ISO and the 24-70 f2.8 at 1000 ISO – as massively different as day and night.

Whoops….it’s all turned to crap!

Just take a moment to look at the info here.  There is movement in the orange/red/red magentas, but even bigger movements in the yellows/greens and the blues and blue/magentas.

Because these comparisons are done simply in Photoshop layers with the top layer at 50% opacity you can even see there’s an overall difference in the Hue and Saturation slider values for the two profiles – the 500mm profile is 2 and -10 respectively and the 24-70mm is actually 1 and -9.

The basic upshot of this information is that the two lenses apply a different colour cast to your image AND that cast is not always uniformly applied to all areas of the colour spectrum.

And if you really want to “screw the pooch” then here’s the above comparison side by side with with  the 500f4 1000iso against the 24-70mm f2.8 200iso view:

camera calibration, Andy Astbury, colour, color management

500mm f4/24-70mm f2.8 1000 ISO comparison versus 500mm f4 1000 ISO and 24-70mm f2.8 200 ISO.

A totally different spectral distribution of colour reference points again.

And I’m not even going to bother showing you that the same camera/lens/ISO combo will give different results under different lighting conditions – you should by now be able to envisage that little nugget yourselves.

So, Custom Camera Calibration – if you do it right then you’ll be profiling every body/lens combo you have, at every conceivable ISO value and lighting condition – it’s one of those things that if you don’t do it all then you’d be best off not doing at all in most cases.

I can think of a few instances where I would do it as a matter of course, such as scientific work, photo-microscopy, and artwork photography/copystand work etc, but these would be well outside the remit the more normal photographic practices.

As I said earlier, the Passport device itself is worth far more than it’s weight in gold – set up and light your shot and include the Passport device in a prominent place. Take a second shot without it and use shot 1 to custom white balance shot 2 – a dead easy process that makes the device invaluable for portrait and studio work etc.

But I hope by now you can begin to see the futility of trying to use a custom camera calibration profile on a “one size fits all” basis – it just won’t work correctly; and yet for the most part this is how it’s marketed – especially by third party retailers.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Exposure Compensation

Exposure Compensation

Exposure Compensation – that’s something else that cropped up once or twice for the chaps on my recent Norwegian Eagle workshop!

We had something like 420 or more dives from eagles during the trip, and very few if any were shot with flat metering, or 0Ev compensation.

What is Exposure Compensation, and why do we need to use it?

It all begins with this little button:

Exposure Compensation,exposure

D3 Exposure Compensation button – Nikon, Canon and most others use the same symbol.

Pushing this button and rotating your main command dial will select a certain exposure compensation value.

Why do we need to use Exposure Compensation though?

Cameras, for all their complexity and “intelligent whotsits” are basically STUPID!  They don’t know WHAT you are trying to photograph, or HOW you are trying to photograph it.

They make a lot of very basic assumptions about what you are trying to do – 99.99% of which are WRONG!

The camera does NOT know if you are trying to photograph:

  • A white cat in a coal shed
  • A black cat in a snow storm
  • A white cat in a snow storm
  • A black cat in a coal shed

All it sees is a frame full of various amounts of light and shade, and depending on your metering mode (which should always be Matrix/Evaluative – see post here) it gives you an “average mean exposure value”.

Take a general scene of fairly low contrast under flat overcast light:

exposure compensation,exposure,metering

A scene as WE see it.

exposure compensation,exposure,metering

The same scene as the camera METER sees it.

exposure compensation,exposure,metering

Lighter tones within the scene.

exposure compensation,exposure,metering

Some darker area tones within the scene.

exposure compensation,exposure,metering

The exposure is governed by the PREDOMINANT tone.

As discussed in the previous metering article mentioned earlier, only MATRIX/EVALUATIVE takes the entire frame area into account.

Okay, so that scene was fairly bland on the old tonal front, so let’s have a look at something a little more relevant:

exposure compensation,exposure,metering

Straight off the camera with no processing. 1/2000th @ f4 1600ISO +1.3Ev

exposure compensation,exposure,metering

As the camera metered the scene WITHOUT compensation.

Why would the image be so dark and under exposed?

Well here’s an approximation of the cameras average tone “thought process”:

exposure compensation,exposure,metering

The approximate average value of the scene.

But if we look at some averages WITHIN the overall image:

exposure compensation,exposure,metering

Random tonal averages within the image.

We can see that the tonal values for the subject are generally darker than the average scene value, therefore the camera records those values as “under exposed”.

This is further compounded by the cameras brain making the decision that the commonest tonal value MUST represent “mid grey” – which it DOESN’T; it’s lighter than that – and so under exposing the image even further!

Now I’m not going to get into the argument about “what is mid grey” and do Nikon et al calibrate to 12%, 18%, 20% or whatever – to be honest it’s “neither here nor there” from our standpoint.

What is CRITICAL though is that we understand the old adage:

“Light Subject Dark Background = Under, or negative exposure compensation. And that Dark Subject Light Background = Over, or positive exposure compensation”.

Okay, but what are we actually doing?

In any exposure mode other than Manual mode, we are allowing the camera to meter the scene AND make the decision over which shutter speed or aperture to use depending on whether we have the camera in Av or Tv mode – that’s Canon-speak for A or S on Nikon.

If we are in shutter priority/S/Tv mode then the camera sets the aperture to give us its metered exposure – that thing that’s usually WRONG! – at the shutter speed we’ve selected.

If, as in the case above, we ADD +1.3Ev – one and one third stops of POSITIVE exposure compensation, the camera uses the shutter speed we’ve selected but then opens up the aperture WIDER than it’s “brain” wants it to.

How wide? 1.3 stops wider, thus allowing 1.3 stops more light into the the sensor during the exposure time.

If we were in Av/A or aperture priority mode then it’s the shutter speed that would take up the slack and become 1.3 stops SLOWER than the cameras “brain” wanted it to be.

Here’s an example of negative exposure compensation:

exposure compensation,exposure,metering

1/3200th @ f4.5 1000ISO -1.3Ev exposure compensation.

In this particular shot we’re pointing towards the sun – a “dark subject, light background” positive exposure compensation scenario, or so you’d think.

But I want to “protect” those orange highlights in the water and the brightest tones in the eagle, so if I “peg those highlights” just over a stop below the top end of the cameras’  tonal response curve then there is no way on earth they are going to “blow” in the final RAW file.

Manual Exposure mode can still furnish us with exposure compensation based on metering if we engage AUTO-ISO.  If we decide we want to shoot continuously with a high shutter speed and a set aperture at a fixed ISO then our exposures are going to be all over the place.  But if we engage AUTO-ISO and let the camera choose the ISO speed via the meter reading, we can use the exposure compensation adjustments just the same as we do in Av or Tv modes.

This get’s us away from the problem of fixed ISO Tv mode running out of aperture in low light or when very high shutter speeds are needed; or conversely, stopping the aperture down too far when the sun comes out! – I’ll do a breakdown on this method of shooting later in the year – it’s not without it’s problems.

Next time you get the chance to stand by a large lake or other body of water, just take a moment to notice that the water is dark in some places and light in others. ambient light falling on a moving subject can easily be very uniform and so the subject basically has the same exposure value all the time.  But it’s the changing brightness of the background as the subject moves across it that causes us to need exposure compensation.

People seem to think there’s some sort of “magic” at play when they come out with me and I’m throwing exposure compensation values at them.  But there’s no magic here folks, just an ability to see beyond “the subject, framing etc” and to actually “see the light” and understand it.

After all, when we click our shutters we are imaging light – the subject is, for the most part, purely incidental!

And there’s only one way you can learn to see light and grasp its implications for camera exposure, and that’s to practice.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Auto Focus Work Out

Auto Focus Work Out

My recent summer trip to Flatanger in Norway, and to the famous “Eagle Man of Norway” Ole Martin Dahle, proved, as ever, a severe test of the auto focus capabilities of the gear!

We had 4 guys on the trip, 3 Nikon and 1 Canon, and White-tailed Eagles doing more than 40mph and turning on a dime is one of the hardest tests for auto focus tracking and lock on that you can imagine – especially when it’s all done hand held from a boat that’s rolling around in the sea swell.

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings

The Guys – yours truly, Malcolm Clayton and Paul Atkins; and Mohamed El Ashkar (all the way from Cairo!) and our Cambridge “Don” – all trips should have one – Jamie Gundry. Photo by Ole Martin Dahle.

We had a conglomeration of D4’s, D800E’s and 200-400 f4’s, with a smattering of 300mm and 400mm f2.8’s – and then there was Mohamed with his solitary 1Dx and 300 f2.8.

And our target:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings

Say “Hello” to “Brutus” – an eagle who lives up to his name for sure – a total brute, especially to a boat full of daft photographers! CLICK for larger view.

Just to set the scene with regard to the technical side of things; birds fly into the wind given the choice, and the sun is wherever it decides to be! So the boat driver – Ole – always needs to position the boat so that “wind and sunlight” are coming from pretty much the same direction, otherwise the birds are not front-lit and cast their own shadows across themselves. In other words the images look like crap!

Some birds come towards the boat, take the fish and then turn away; some will do their approach parallel to the boat; and gits like Brutus will fly low and fast straight at you, pick the fish and then turn straight for the boat and climb.

But no matter how they choose to approach the camera boat all the birds pick the fish and go back to where they’ve come from.

Ole has intimate knowledge of these birds as individuals, and so has a damn good idea of what they will do as they come to the boat.  This enables him to manoeuvre the boat for the best shots, and this skill is what you pay for.

Perhaps by now you’ve got the general feel for the situation – a boat that’s subject to wave motion and which might suddenly go backwards 10 yards through its own wake – not the steadiest of camera platforms!

Couple that with trying to make the auto focus lock on and track the bird, and maintain a modicum of composition – it’s just damned hard work.

Photographing anything that’s moving is hard work; moving erratically is even harder; and hand holding on an oscillating camera platform makes the job beyond hard.  This style of shooting will NEVER yield vast rafts of sharp sequential images – anyone who tells you different is an outright liar. Christ, even licensed FIA F1 ‘togs are on “easy street” by comparison.

Auto focus cannot be set up perfectly for this sort of situation, but understanding it is a MUST if you want to maximise the opportunity.

Auto Focus Choices

There are 3 main things that control the effectiveness of auto focus and AF tracking:

AF Area Mode

AF Tracking Lock-on interval

Frame Rate

(Bare in mind I’m talking Nikon here, but sorting Mohameds’ 1Dx out showed my that Canon AF is pretty much the same).

Now I dealt with the latter in a previous post HERE and so we need to concentrate here on AF area modes in the main.

Let’s look at what we have to work with on a Nikon body – in this case a D4:

Firstly, the AF sensor layout.

All 51 focus sensors, and there approximate layout in relation to the image frame:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings

All 51 of the Nikon Multi Cam 3500 FX focus sensors – both cross and linear sensors depicted.

Just the Cross-type Sensors:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

The 15 Cross type focus sensors on the Nikon Multi-Cam 3500 FX unit.

The Linear-type Sensors:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

The 36 Linear type focus sensors on the Nikon Multi-Cam 3500 FX unit.

Single Area AF

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

Single Area, or single point AF.

9 Point Dynamic Area AF:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

9 Point Dynamic Area AF

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

9 Point DA AF as displayed in the viewfinder (drop shadows added in Photoshop behind the dots to aid visibility in this article).

21 Point Dynamic Area AF:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

21 Point Dynamic Area AF

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

21 Point DA AF as displayed in the viewfinder (drop shadows added in Photoshop behind the dots to aid visibility in this article).

51 Point Dynamic Area AF:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

51 Point DA AF as displayed in the viewfinder (drop shadows added in Photoshop behind the dots to aid visibility in this article).

As a stills photographer you are using what’s called Phase Detection auto focus (that’ll be another blog post topic!) but it still relies on a mix of contrast,luminosity and colour to work out what it should be concentrating on in the frame.

Consider the following 2 images, A & B:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

A. Dark Subject and Light Background.
Subject itself is low contrast, background water is higher contrast. Subject is at 15 meters, Focal Length is 240mm

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

B. Light Subject against a Dark Background.
Subject now has a slightly higher contrast, and background is lower contrast. Subject 29 meters, Focal length 360mm

Auto focus is dumb; just plain stupid, left to its own devices.  It, like me (yep, me dumb too!) favours lighter things with a higher degree of contrast.  The lighter something is then the brighter and more saturated it colour is, and this in turn gives it higher localised contrast.

Auto focus will be happier locking on to and tracking Eagle B than Eagle A.

In A, the AF will want to switch to the lighter, more contrasty water behind the bird – unless of course you “hobble it” and stop it from doing so…

And you stop it by BLINDING IT – in other words use LESS active auto focus points!

“If it ain’t got ’em it can’t switch to ’em!”

If all the AF points in use are on the important part of the subject (the EYE in this case) then there’s little or no chance of the auto focus switching to somewhere you don’t want it to go to.

In a perfect world we’d all be using Single Area AF on a tripod and panning away quite happily keeping that single sensor on the targets eye……………oh I wish!!!!!!

51 point AF is out for this sort of work – with what I’ve just written you should now easily understand why.

So we are down to either the 9 point or 21 point Dynamic Areas.

It all comes down to two things:

  • How steady you can keep the camera.
  • How big in the frame the birds are – in other words, subject distance.

But accuracy of auto focus will always be improved by using the least number of sensors you can get away with.

 

Image A. is at 240mm and a subject distance of 15 meters, and Image B. is at 360mm and a subject distance of 29 meters.  Both images were shot using 21 point Dynamic Area AF, 1/2000th @ f7 and 1600ISO.

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

21 point AF, 15 meters and 240mm focal length.

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

21 point AF, 29 meters and 360mm focal length.

On the upper detail image there’s one, perhaps two of the 21 sensors that are NOT on the subject.

On the second image there are at least 9 sensors out of the 21 in the group that are NOT on the bird.

If the bird in image A. had been 29 meters away I’ll guarantee it would have been out of focus – why?

  • Lack of good directional light.
  • Poor subject contrast and illumination.
  • Brighter, higher contrast background.
  • More sensors “Off Target”.

And the auto focus hasn’t wanted to wander to the background on image B. because there’s nothing there for it to favour over the main subject.

How Dynamic Area AF Works

9 point DA auto focus uses the single AF point that you select, but activates the 8 points surrounding it.  If you, or the subject, or both, move so that the single point you selected comes “off target” then one of those 8 surrounding points will “cover” the error and maintain focus lock and tracking until you get back on target.

In 9 point DA, auto focus ALL the sensors activated are “cross type” sensors, assuming you use a sensor on the vertical center line of the AF grid.

In 21 point DA, auto focus is still centered on the single sensor you select, but now the surrounding 20 are activated. But at least 6 of these sensors will be linear, not cross type sensors.

Auto Focus Senor Types – Cross and Linear (line).

This is going to be immensely paraphrased!

AF sensors need to see edge detail in order to work. A linear sensor can work more effectively when the edge it’s looking at is perpendicular to it.

The more an edge is parallel to said line sensor then the harder time it has in discerning when said edge is sharp or not.

But if we add 2 line sensors together at right angles to each other, then an edge that is parallel to one line is perpendicular to the other – so edge detection is greatly enhanced.

In an ideal scenario 9 point Dynamic Area AF, centered in the middle of the view finder and kept on the eagles head would be the ideal way to go, but with the other circumstances of:

  • Moving camera platform
  • Potential closeness of subject (sub 15 meters possible)

then 9 point DA might be a wee bit tight on both counts, and 21 point makes more sense from a tracking and shooting perspective.

But it leads to an initial problem with the auto focus acquiring the target in the first place.  You have to pick these eagles up quite a way out, and if one is coming low to the water then there is possibly too much in the frame to act as a distraction to the auto focus unit itself; though this isn’t quite such an issue if the bird is high in the sky.

So my recommendation for any form of bird-in-flight photography is to start out at 9 point DA and see how you get on!

There is always the AF Tracking Lock On feature that you can deploy in order to “hobble” the AF unit from switching  to subjects closer to or further away, but if I’m honest I find this the most sticky and difficult aspect of the Nikon system to get a precise handle on.  It does exactly “what it says on the tin” but it’s the “when” and “how much by” bits that have me slightly guessing.

Sometimes I put it on long and it basically waits for perhaps 4 or 5 seconds before it tries to switch focus, while at other times it does so in less than half the time.  Sometimes I feel it actually diminishes the effectiveness of the “predictive” side of the auto focus tracking unit.

But if I turn it off when hand holding the camera for flight shots then everything turns to crap – so I turn it back on again!

Again, my base recommendations for this are SHORT to NORMAL and see how things go.

One thing that can have a considerable impact on the way you perceive your auto focus effectiveness is how you have your AF release priority set up (CS a1).

There are 4 options:

  • Release
  • Focus+Release
  • Release+Focus
  • Focus

By default this is set to FOCUS.  With the default setting, it’s theoretically impossible to take a soft shot.  But in practice that’s not so simple, and I’ve taken many a soft shot when the D4 “thinks” things are sharp; though in the main, that seems to have been cured the minute we got trap focus back with the latest firmware upgrade.

Release means the camera will take shots irrespective of focus being acquired or not.  I NEVER use this option.

Focus+Release means that the first frame will only be taken once focus is acquired, and subsequent frames will be taken irrespective of focus.  This is one of my preferred options when everything is unstable – that first frame hopefully sets up the auto focus and AF tracking and so everything SHOULD keep the subsequent frames sharp – please note the use of the word “should”!

Both the above release priority modes do NOT slow the frame rate.

Release+Focus – works the opposite way to Focus+Release – it does slow the frame rate down giving the mirror more down-time and so the auto focus system has more time to work.  This is my other preferred option, the one I use when the “action” may not be as repeatable.

Focus – This is the option I deploy when shooting from a tripod or when the action is not quite so fast-paced.  Again, this option slows the frame rate.

The Back Button Auto Focus Option

I always use the back button for auto focus activation.  There are plenty of arguments for doing this, but I just feel it’s darn right more efficient than having AF activation on the shutter button.  Just don’t forget to turn AF/Shutter ON to OFF in the menu, otherwise you are just wasting time and effort!

Conclusion

A lot of folk feel that their auto focus is flawed; but more often it is they and their setup choices which are flawed.

There is no blanket panacea or magic bullet setting for your AF system – as with everything else you have to constantly evaluate the light around you, anticipate the shot and make the necessary changes to setup – otherwise it’s going to be a sad day.

But knowing how your gear works and how it reacts under different scenarios is the “meat and two veg” of good photography.  Couple that with shot anticipation and the proper corrective measures and it’s off home for tea and medals!

But above all, remember to have a laugh – you’re a long time dead……..

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

“GIMME SOME, YOU MEAN BARSTARD!”

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Black Ink Type

Black ink type and black ink switching when moving from matte to luster and gloss papers – here’s my thoughts on this, initially triggered by Franks’ reply to my previous article HERE.

And I quote:

Another great and instructive article Andy. I have the r3000 but get slightly annoyed with the black ink changes from one to the other. Some further guidance on the use of these re paper ‘types’ would be appreciated by moi ~ please ♡

Look, he’s even put a heart in there – bless you Frank, that’s more than I’ve got out of ‘her indoors’ for years!

Now the basic school of thought over this switching of black ink type is this:

  • PK, or Photo Black ink type supposedly produces a smooth, highly glossy black.
  • MK or Matte Black ink type produces a dull, flat black.
  • Using a matte finish paper requires the MATTE black ink type.
  • Using Luster or Gloss paper requires the Photo black ink type.

The PK black ink type really only produces a HIGH GLOSS finish when chucked onto HIGH GLOSS media.  Its’ got a rather less glossy and more ‘egg shell’ finish when used on a more luster finish paper. There does come a “tipping point” though where it will look a little shinier than the finish of the paper – and it’s this tipping point where theory, clever-dicks and user-guides tell you there’s a need to switch to the matte black ink type.

The Matte black ink type does exactly what point two says it does.

The third point – replace the word “requires” with the phrase “can cope with” and we’d be about right.

The forth point is absolutely true; get this wrong by printing with the MK black ink type on high gloss paper and you’ll just waste consumables and potentially end up with the type of clean up operation normally the preserve of Exon & BP. Dot gain on steroids!

There’s also an argument that the MK black ink type produces a deeper black on matte finish paper than the PK black ink type – this is also true:

printing,black ink,profile,icc profile,black ink type,matte finish,gloss finish,luster finish,

Permajet canned profiles for Museum paper on the Epson 4800 printer using PK and MK black ink types.

As we can clearly see, the Matte black ink type does indeed accommodate a deeper black point than its counterpart Photo black ink type.

Adopting the Common Sense Approach

There are a few things we need to think about here, and the first one is my constant mantra that the choice of paper is governed by the “overall look, feel and atmosphere of the finished image” when it’s sitting there on your monitor.

Paper choice IS the final part of the creative process; for all the reasons I’ve mentioned in past blog posts.

You will also know by now that in my world there is little room for high gloss paper – it’s a total pain the bum because of its highly reflective surface; but that same surface can allow you to print the very finest of details.

But here’s common sense point number 1 – the majority of people reading this blog, attending my workshops and coming to me for 1to1 tuition CAN NOT produce images with detail fine enough to warrant this single benefit of high gloss paper.

That’s not because they’re daft or rubbish at processing either – it’s simply due to the fact that they shoot 35mm format dSLR, not £30K medium format.  The sensors we commonly use can’t record enough ultra fine detail.  There’s a really good comparison between the Nikon D800 and an IQ160 here, it’s well worth having a look – then you’ll see what I’m on about.

The point I’m trying to make is this; print on gloss from 35mm if you like; but you are saddling yourself with its problems but not truthfully getting any of the benefit – but you can kid yourself if you like!

I Lust After Luster Papers But How Lusty Is That Luster?

As I mentioned in the previous post, Calumet Brilliant Museum Satin Matte Natural is NOT a matte finish paper.

True matte papers never really hold much appeal for me if I’m honest, because they are very dull, flat and relatively lifeless.  Yes, a 12×12 inch monochromatic image might look stunning, especially hanging in an area where reflections might prove difficult for any other print surface.

But that same image printed 8 foot square might well “kill’ any room you hang it in, just because it’s so dull and so damned BIG.

True matte papers do have their uses that’s for sure, but in the main you need to discriminate between matte and what I call matte “effect”.

Permajet Fine Art Museum 310, Matte Plus and Portrait 300 are papers that spring to mind as falling into this matte effect category – and wouldn’t you know it, there are canned profiles for these papers for both PK and MK black ink type ink sets, as you can see from the image earlier in the post.

So, with regard to black ink type switching you have to ask yourself:

  • Am I using a paper the ACTUALLY NEEDS the MK black ink type?  Chances are you’re probably not!
  • If I am, do I really want to – how big a print am I doing?

In my own print portfolio I only have two images that benefit from being printed on a “dead” media surface, and they are both printed to Permajet Museum using the PK black ink type.

I had another one that looked “nearly there” but the heavy texture of the paper detracted from the image, so it was re-proofed and printed to Matt Plus, again using PK ink. It looked just the same from a colour/luminance stand point, but worse from a ‘style’ point because of the zero texture.

Along comes Calumet Museum Satin Matte Natural!

The subtle texture gets me where I wanted to be on that score, and that ever-so-soft luster just makes the colours come to life that tiny bit more, giving me a print variation that I love and hadn’t even envisaged at the time I did the original print.

Ink Type Switching

I have to say at the outset that I do NOT own an R3000 printer – I use wide format Epson printers and so have no commercial need for the 3000 DT format.  But I always advise people looking for a printer to buy one – it’s a stunning machine that punches well above it’s weight based on price point.

My Epson wide format does not hold both black ink types.  Switching entails a rather tedious and highly wasteful process; which I have neither desire or need to embark upon.

But if you have any brand of printer that carries both types on board then I’d highly recommend you to set the black ink type to PK, and turn any auto-switching OFF – that is, set switching to manual.

Right, now the super-pessimist in me shines through!

I’m not a fan of Epson papers on the whole, and there’s a lot more choice and far better quality available from third party suppliers ranging from Photospeed to Hahnemuhle, Canson, Red River and all points in between.

Now third party suppliers in the main will tell you to use one black ink type or the other – or either, and give you the correct media settings (Brilliant – are you reading this??).

But, if you have auto switching enabled, and use Epson paper, the print head sees the paper surface and automatically switches the ink to the ‘supposed’ correct type.  This switching process requires the printer to purge the black ink line and refill it with the ‘correct’ black ink type before printing commences.

Now these figures are the stats quoted from Epson:

Black ink conversion times:

  • Matte to Photo Black approx. 3 min. 30 sec
  • Photo to Matte Black approx. 2 min. sec

Ink used during conversion:

  • Matte to Photo Black approx. 3 ml
  • Photo to Matte Black approx. 1 ml

Now why the times and volumes aren’t the same in both directions is a bit of a mystery to me and doesn’t make sense.  But what is killer is that the carts are only 26 (25.9)ml and around £24 each, so 6 changes of black ink type is going to burn through as good as £25 of ink – and that’s without doing any bloody printing!!!

When ever I demo this printer at a workshop I never use Epson paper, auto switching is OFF and I never get a head sensor warning to tell me to switch ink even if I load Permajet Museum – the head sensor doesn’t warn me about the fact that I’m using PK ink.

Yes the printer could be up the spout, but using a canned PK profile the resulting print would tend to indicate otherwise.

Or something slightly more dark and sinister might be happening – or rather NOT, because I’m not using OEM paper………...What was that I heard you say?  Good gracious me…you might think that but I couldn’t possibly comment!

One thing to bare in mind is this.  For the most part, the majority of print media will work exceptionally well with the PK black ink type – BUT NOT THE OTHER WAY AROUND – you’ve been warned.  If you want to know how the captain of the Exon Valdez felt and be up to your ass in black stuff then go ahead and give it a try, but don’t send the cleaning bills to me!

I did it once years ago with an HP printer – I can still see matte black ink tide marks on the skirting board in my office……it wasn’t pretty! And it screwed the printer up totally.

Using PK on matte media will only effect the D-max and lower the overall contrast a wee bit; unless it’s a very low key image with vast areas of blackish tones in it then for the most part you’d perhaps struggle to notice it.  Sometimes you might even find that the drop in contrast even works to your advantage.

But don’t forget, you might not be using a matte media at all, even though it visually looks like it and says the word matte in the paper name.  If the paper manufacturer supplies a PK and an MK profile for the same paper then save yourself time and money and use the PK profile to soft-proof to AND to control the printer colour management.

Did that answer your question Frank – FRANK – can you hear me Frank??!!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Trap Focus

Trap Focus on the Nikon D4

Trap focus comes to my D4 – Yay!!!!!!!!

What was it Nikon said – “we left it off the D4 because no one wanted it”….or words to that effect.

Well, with today’s (March 18th 2014) update version 1.10 trap focus is back – in a fashion.

What is trap focus some may ask.  Well it’s basically pre-focusing on a particular distance or spot where you expect the subject to be or to pass through.

As the subject enters the frame and gets closer to the camera it’s also getting closer to the pre-focused distance, and when it reaches the set focus distance the camera actually detects the subject/image is sharp and so takes the shot.

Basically you sit there with the shutter button fully depressed, but no shots get taken until the camera AF system deems the subject is now in focus.

It’s a technique that a lot of sports photographers find very useful, but I find it has very limited use for my wildlife & natural history work.  Having said that, it’s got me out of a bind more than once over the years, but ever since the D4 came out you’ve not been able to use it.

The failing lay in the flawed D4 focus priority – even if you told it to only trip the shutter when the image was deemed ‘in focus’ by setting CS a1 & a2 to FOCUS, it would still fire as if a1 and a2 were set to release priority.

But the new firmware update v1.10 has given trap focus back to the D4, but before you start jumping up and down and getting all excited you need to know how to set it up, and bare in mind that “as a technique” trap focus might not suit what you had in mind.

Setup for D4 Trap Focus

  1. Update firmware to v1.10 – read the instructions FULLY before you attempt this, otherwise you may need another camera!
  2. Go to Custom Settings a2 AF-S priority selection and set to FOCUS.
  3. Go to Custom Settings a4 AF activation and set to AF-ON only – this takes to AF activation away from the shutter release button.
  4. Put a wide angle lens on the camera.
  5. Set the lens focus switch to M/A
  6. Set the D4 focus mode selector (the lever on left side of the body front) to AF
  7. Press the AF mode button and rotate the Command Dial (back one) to select AFS and NOT AFC.
  8. Rotate the Sub Command Dial (front one) to select S (single) and NOT Auto.
  9. Focus on your computers monitor screen using either the manual focus ring of the lens or the rear AF-ON button next to the Command Dial.
  10. If you’ve pressed the latter TAKE your thumb OFF!
  11. Move the camera directly away from the computer monitor screen so the image in the viewfinder goes soft.
  12. Jam your finger down on the shutter release. Nothing happens (if it does then start again!).
  13. Keeping that shutter button depressed and NOT touching the lens or AF button, move back towards the computers monitor screen – the shutter will fire when the monitor screen is sharp.

Got that?  Good!  Oh, and by the way, the award-winning shot you just missed – it would have been epic!

Now you’ve got a D4 that does trap focus.

Now for the trap focus caveats:

Trap Focus only works in AFS – not in AFC.

Trap Focus only works with a single AF sensor, AFS-S – so correct prediction of that one AF sensor/subject alignment to get the required ‘bits” in sharp focus and DoF is going to be difficult.

wildlife photography, common Kestrel, photography technique,manual focus trap,trap focus

Common Kestrel Landing
©Andy Astbury/Wildlife in Pixels

Do NOT think you can pull this wildlife shot off using TRAP FOCUS.

By the time the camera has detected the sharp focus and got over the system lock time and triggered the shutter, the bird will be way closer to the camera – and sharp focus in the resulting image will be behind the tail!

This shot is done with a manual focus trap – a completely different technique, as described HERE

The subject is too small and so to close to the camera and 500mm lens for trap focus to work effectively.

However, if you are doing sports photography for instance, you are imaging subjects that are much bigger and a lot further away.

A 500mm f4 on an FX body has over 2 meters depth of field at f5.6 when focused at 40 meters.  Take a baseball match for instance – not that I’ve ever covered one mind!

Set the single AF sensor focus distance at home plate.

Then tilt the camera up slightly, or move the sensor with the Dpad so it can’t see/is not overlaying what you just focused on. Hold the shutter button down and wait for a player to make a dive for home plate.  As he enters the area of the AF sensor the camera will fire continually if you’re in continuous shooting mode, and will only stop when the camera detects focus has been lost.

Works like a charm!

The key thing is that the depth of field generated by the focus distance makes trap focus work for you – at much shorter distances where depth of field is down to an inch or so if you’re lucky, then couple that with a fast subject approach speed, and trap focus will fall down as a reliable method.

If I’m doing studio flash work like this:

WIP00048398

which is never often enough any more! – I sometimes find it useful to use trap focus because it can help doing hand held work under the lowish flash unit modelling lights when you want to make sure eyes are sharp.

Using Trap Focus in a sort of 'bastardised' manner can help you maintain sharp focus on models eyes whilst giving you freedom to move around, change composition, zoom etc. by controlling the sharpness of the image with the lens focus ring.

Using Trap Focus in a sort of ‘bastardised’ manner can help you maintain sharp focus on models eyes whilst giving you freedom to move around, change composition, zoom etc. by controlling the sharpness of the image with the lens focus ring.

Like I said earlier, it’s a technique that can get you out of trouble every now and again, but up until today you hadn’t got recourse to it on the D4.

But you seriously need to understand the limitations of trap focus deployment before you rush out and use it – you could be very disappointed with the results, and it’ll be all your own fault for trying to bang a square peg through a round hole.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

What Shutter Speed?

Shutter speed, and the choices we make over it, can have a profound effect on the outcome of the final image.

Now everyone has a grasp of shutter speed and how it relates to subject movement – at least I hope they do!

We can either use a fast shutter speed to freeze constant action, or we can use a slow shutter speed to:

  • Allow us to capture movement of the subject for creative purposes
  • Allow us to use a lower ISO/smaller aperture when shooting a subject with little or no movement.

 

Fast Shutter Speed – I need MORE LIGHT Barry!

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

1/8000th sec @ f8, Nikon D4 and 500mm f4

Good strongish sunlight directly behind the camera floods this Red Kite with light when it rolls over into a dive.  I’m daft enough to be doing this session with a 500mm f4 that has very little in the way of natural depth-of-field so I opt to shoot at f8.  Normally I’d expect to be shooting the D4 at 2000iso for action like this but my top end shutter speed is 1/8000th and this shutter speed at f8 was slightly too hot on the exposure front, so I knocked the ISO down to 1600 just to protect the highlights a little more.

Creative Slow Shutter Speed – getting rid of light.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

1/5th sec @ f22

I wanted to capture the movement in a flock of seagulls taking off from the water, so now I have to think the opposite way to the Kite shot above.

Firstly I need to think carefully about the length of shutter speed I choose: too short and I won’t capture enough movement; and too long will bring a vertical movement component into the image from me not being able to hold the camera still – so I opt for 1/5th sec.

Next to consider is aperture.  Diffraction on a deliberate motion blur has little impact, but believe it or not focus and depth of field DO – go figure!

So I can run the lens at f16/20/22 without much of a worry, and 100 ISO gets me the 1/5th sec shutter speed I need at f22.

 

Slow Shutter  Rear Curtain Synch Flash

We can use a combination of both techniques in one SINGLE exposure with the employment of flash, rear curtain synch and a relatively slow shutter speed:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

6/10th sec @ f3.5 -1Ev rear curtain synch flash

A technique the “Man Cub” uses to great effect in his nightclub photography, here he’s rotated the camera whilst the shutter is open, thus capturing the glowing LEDs and other highlights as circular trails.  As the shutter begins to close, the scene is lit by the 1/10,000th sec burst of light from the reduced power, rear curtain synched SB800 flash unit.

But things are not always quite so cut-and-dried – are they ever?

Assuming the lens you use is tack sharp and the subject is perfectly focused there are two factors that have a direct influence upon how sharp the shot will be:

  • System Vibration – caused by internal vibrations, most notably from the mirror being activated.
  • Camera Shake – caused by external forces like wind, ground vibration or you not holding the camera properly.

Shutter Speed and System Vibration

There was a time when we operated on the old adage that the slowest shutter speed you needed for general hand held shooting was equal to 1/focal length.

So if you were using a 200mm lens you shot with a minimum shutter speed of 1/200th sec, and, for the most part, that rule served us all rather well with 35mm film; assuming of course that 1/200th sec was sufficient to freeze the action!

Now this is a somewhat optimistic rule and assumes that you are hand holding the camera using a good average technique.  But put the camera on a tripod and trigger it with a cable or remote release, and it’s a whole new story.

Why?  Because sticking the camera on a tripod and not touching it during the exposure means that we have taken away the “grounding effect” of our mass from the camera and lens; thus leaving the door open to for system vibration to ruin our image.

 

How Does System Vibration Effect an Image?

Nowadays we live in a digital world with very high resolution sensors instead of film. and the very nature of a sensor – its pixel structure (to use a common parlance) has a direct influence on minimum shutter speed.

So many camera owners today have the misguided notion that using a tripod is the answer to all their prayers in terms of getting sharp images – sadly this ain’t necessarily so.

They also have the other misguided notion that “more megapixels” makes life easier – well, that definitely isn’t true!

The smallest detail that can be recorded by a sensor is a point of light in the projected image that has the same dimensions a one photosite/pixel on that sensor. So, even if a point is SMALLER than the photosite it strikes, its intensity or luminance will effect the whole photosite.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images.

A point of light smaller than 1 photosite (left) has an effect on the whole photosite (right).

If the lens is capable of resolving this tiny detail, our sensor – in this case (right) – isn’t, and so the lens out-resolves the sensor.

But let’s now consider this tiny point detail and how it effects a sensor of higher resolution; in other words, a sensor with smaller photosites:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

The same detail projected onto a higher resolution sensor (right). Though not shown, the entire photosite will be effected, but its surface area represents a much small percentage of the whole sensor area – the sensor now matches the lens resolution.

Now this might seem like a good thing; after all, we can resolve smaller details.  But, there’s a catch when it comes to vibration:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

A certain level of vibration causes the small point of light to vibrate. The extremes of this vibration are represented by the the outline circles.

The degree of movement/vibration/oscillation is identical on both sensors; but the resulting effect on the exposure is totally different:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

The same level of vibration has more effect on the higher resolution sensor.

If you read the earlier post on sensor resolution and diffraction HERE you’ll soon identify the same concept.

The upshot of it all is that “X” level of internal system vibration has a greater effect on a higher resolution sensor than it does on a lower resolution sensor.

Now what’s all this got to with shutter speed I hear you ask.  Well, whereas 1/focal length used to work pretty well back in the day, we need to advance the theory a little.

Let’s look at four shots from a Nikon D3, shot with a 300mm f2.8, mounted on a tripod and activated by a remote (so no finger-jabbing on the shutter button to effect the images).

Also please note that the lens is MANUALLY FOCUSED just once, so is sharply on the same place for all 4 shots.

These images are full resolution crops, I strongly recommend that you click on all four images to open them in new tabs and view them sequentially.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/1x (1/320th) Focal Length. No VR, No MLU (Mirror Lock Up). Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x (1/640th) Focal length. No VR. No MLU. Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x Focal length + VR. No MLU. Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x Focal length. Camera on Tripod+remote release + MLU – NO VR + Sandbag.

Now the thing is, the first shot at 1/320th looks crap because it’s riddled with system vibration – mainly a result of what’s termed ‘mirror slap’.  These vibrations travel up the lens barrel and are then reflected back by the front of the lens.  You basically end up with a packet of vibrations running up and down the lens barrel until they eventually die out.

These vibrations in effect make the sensor and the image being projected onto it ‘buzz, shimmy and shake’ – thus we get a fuzzy image; and all the fuzziness is down to internal system vibration.

We would actually have got a sharper shot hand holding the lens – the act of hand holding kills the vibrations!

As you can see in shot 2 we get a big jump in vibration reduction just by cranking the shutter speed up to 2x focal length (actually 1/640th).

The shot would be even sharper at 3x or 4x, because the vibrations are of a set frequency and thus speed of travel, and the faster the shutter speed we use the sooner we can get the exposure over and done with before the vibrations have any effect on the image.

We can employ ‘mirror up shooting’ as a technique to combat these vibrations; by lifting the mirror and then pausing to give the vibrations time to decay; and we could engage the lens VR too, as with the 3rd shot.  Collectively there has been another significant jump in overall sharpness of shot 3; though frankly the VR contribution is minimal.

I’m not a very big fan of VR !

In shot 4 you might get some idea why I’m no fan of VR.  Everything is the same as shot 3 except that the VR is OFF, and we’ve added a 3lb sandbag on top of the lens.  This does the same job as hand holding the lens – it kills the vibrations stone dead.

When you are shooting landscapes with much longer exposures/shutter speeds THE ONLY way to work is tripod plus mirror up shooting AND if you can stand to carry the weight, a good heavy sand bag!

Shot 4 would have been just as sharp if the shutter had been open for 20 seconds, just as long as there was no movement at all in the subject AND there was no ground vibration from a passing heavy goods train (there’s a rail track between the camera and the subject!).

For general tripod shooting of fairly static subjects I was always confident of sharp shots on the D3 (12Mb) at 2x focal length.

But since moving to a 16Mp D4 I’ve now found that sometimes this let’s me down, and that 2.5x focal length is a safer minimum to use.

But that’s nothing compared to what some medium format shooters have told me; where they can still detect the effects of vibration on super high resolution backs such as the IQ180 etc at as much as 5x focal length – and that’s with wide angle landscape style lenses!

So, overall my advice is to ALWAYS push for the highest shutter speed you can possibly obtain from the lighting conditions available.

Where this isn’t possible you really do need to perfect the skill of hand holding – once mastered you’ll be amazed at just how slow a shutter speed you can use WITHOUT employing the VR system (VR/IS often causes far more problems than it would apparently solve).

For long lens shooters the technique of killing vibration at low shutter speeds when the gear is mounted on a tripod is CRITICAL, because without it, the images will suffer just because of the tripod!

The remedy is simple – it’s what your left arm is for.

So, to recap:

  • If you shot without a tripod, the physical act of hand holding – properly – has a tendency to negate internal system vibrations caused by mirror slap etc just because your physical mass is in direct contact with the camera and lens, and so “damps” the vibrations.
  • If you shoot without a tripod you need to ensure that you are using a shutter speed fast enough to negate camera shake.
  • If you shoot without a tripod you need to ensure that you are using a shutter speed fast enough to FREEZE the action/movement of your subject.

 

Camera Shake and STUPID VR!

Now I’m going to have to say at the outset that this is only my opinion, and that this is pointed at Nikons VR system, and I don’t strictly know if Canons IS system works on the same math.

And this is not relevant to sensor-based stabilization, only the ‘in the lens’ type of VR.

The mechanics of how it works are somewhat irrelevant, but what is important is its working methodology.

Nikon VR works at a frequency of 1000Hz.

What is a “hertz”?  Well 1Hz = 1 full frequency cycle per second.  So 1000Hz = 1000 cycles per second, and each cycle is 1/1000th sec in duration.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Full cycle sine wave showing 1,0.5 & 0.25 cycles.

Now then, here’s the thing.  The VR unit is measuring the angular momentum of the lens movement at a rate of 1000 times per second. So in other words it is “sampling” movement every 1/1000th of a second and attempting to compensate for that movement.

But Nyquist-Shannon sampling theory – if you’re up for some mind-warping click HERE – says that effective sampling can only be achieved at half the working frequency – 500 cycles per second.

What is the time duration of one cycle at a frequency of 500Hz?  That’s right – 1/500th sec.

So basically, for normal photography, VR ceases to be of any real use at any shutter speed faster than 1/500th.

Remember shot 3 with the 300mm f2.8 earlier – I said the VR contribution at 1/640th was minimal?  Now you know why I said it!

Looking again at the frequency diagram above, we may get a fairly useful sample at 1/4 working frequency – 1/250th sec; but other than that my personal feelings about VR is that it’s junk – under normal circumstances it should be turned OFF.

What circumstances do I class as abnormal? Sitting on the floor of a heli doing ariel shots out of the open door springs to mind.

If you are working in an environment where something is vibrating YOU while you hand hold the camera then VR comes into its own.

But if it’s YOU doing the vibrating/shaking then it’s not going to help you very much in reality.

Yes, it looks good when you try it in the shop, and the sales twat tells you it’ll buy you three extra stops in shutter speed so now you can get shake-free shots at 1/10th of a second.

But unless you are photographing an anaesthetized Sloth or a statue, that 1/10th sec shutter speed is about as much use to you as a hole in the head. VR/IS only stabilizes the lens image – it doesn’t freeze time and stop a bird from flapping its wings, or indeed a brides veil from billowing in the breeze.

Don’t get me wrong; I’m not saying VR/IS is a total waste of time in ALL circumstances.  But I am saying that it’s a tool that should only be deployed when you need it, and YOU need to understand WHEN that time is; AND you need to be aware that it can cause major image problems if you use it in the wrong situation.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

In Conclusion

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

1/2000th sec is sufficient to pretty much freeze the forward motion of this eagle, but not the downward motion of the primary feathers.

This rather crappy shot of a White-tailed eagle might give you food for thought, especially if compared with the Red Kite at the start of the post.

The primary feathers are soft because we’ve run out of depth of field.  But, notice the motion blur on them too?  Even though 1/2000th sec in conjunction with a good panning technique is ample to freeze the forward motion of the bird, that same 1/2000th sec is NOT fast enough to freeze the speed of the descending primary feathers on the end of that 4 foot lever called a wing.

Even though your subject as a whole might be still for 1/60th sec or longer, unless it’s dead, some small part of it will move.  The larger the subject is in the frame then more apparent that movement will be.

Getting good sharp shots without motion blur in part of the subject, or camera shake and system vibration screwing up the entire image is easy; as long as you understand the basics – and your best tool to help you on your way is SHUTTER SPEED.

A tack sharp shot without blur but full of high iso noise is vastly superior to a noiseless shot full of blur and vibration artefacting.

Unless it’s done deliberately of course – “H-arty Farty” as my mate Ole Martin Dahle calls it!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Metering Modes Explained

Camera Metering Modes

Become a Patron!

I always get asked about which camera metering mode I use,  and to be honest, I think sometimes the folk doing the asking just can’t get their heads around my simplistic, and sometimes quite brutal answers!

“Andy, it’s got to be more complicated than that surely….otherwise why does the camera give me so many options…?”

Well, I always like to keep things really simple, mainly because I’m not the brightest diamond in the jewellery shop, and because I’m getting old and most often times my memory keeps buggering off on holiday without telling me!

But before I espouse on “metering the Uncle Andy way” let’s take a quick look at exactly how the usual metering options work and their effects on exposure.

The Metering Modes

  • Average (a setting usually buried in the center-weighted menu)
  • Spot
  • Center-weighted
  • 3D Matrix (Nikon) or Evaluative (Canon)
Metering Mode Icons

Metering Mode Icons

You can continue reading this article FREE over on my public Patreon posts pages.  Just CLICK HERE