Nikon Z7 – I am a Bad Idea

Nikon Z7 – I am a Bad Idea and a waste of YOUR money!

Nikon Z7

And NO – this title isn’t meant as clickbait!

I love Nikon cameras for many reasons.

I HATE Nikon as a company.

I dislike Canon cameras for numerous technical and ergonomic reasons.

I LIKE Canon as a company.

The Nikon D5 was THE FIRST Nikon camera I’ve used that I dislike and thought was like the proverbial bag of spanners.

But now there’s a new Nikon that takes over the mantle of Nikon at its very worst – and I’ve not even clapped eyes on one yet let alone handled one.  I don’t need to play with one to know just how much of a rip-off this pile of rubbish really is.

This camera is £4000 at Wex here in the UK – yes, that FOUR THOUSAND of your hard-earned spondoolicks (for our overseas friends that’s ‘slang’ for pounds sterling).

We’ve already harangued the Z7 for its single media slot – and Canon followed suit with the EOS R, is that a coincidence?

But here’s the kicker, and the MAIN reason why the Nikon Z7 is a crock, and the indicator lies at the foot of page 57 in the Nikon Z7 user manual:

Nikon Z7

And for those with bad eyesight:

Nikon Z7

You can see/download the manual here: NIKON Z7 USER MANUAL

I think the first to show the AF problems with the Nikon Z7 was the ‘afro haircut idiot know-nothing from Philedelphia’ – you know, the guy who never knew how to use Photoshop until the other month when Matt Kloskowski showed him how – live on YouTube.

Lot’s of people are jumping on the DISS THE NIKON Z7 AF bandwagon as I’m typing this, but none of the morons are pointing out WHY the NIKON Z7 auto focus is so crappy.

So I will tell you why!!!!

There is no way to have any control finesse over the AF functionality.

Nikon Z7

Above is the main control functionality for the D5/500/850 MultiCAM 20K AF system.

You will see controls for Blocked Shot Response and Subject Motion.  These roughly equate to Tracking Sensitivity and Acceleration/Deceleration Tracking on the controls for the Canon 61 point Reticular system found on the likes of the 1DX Mk1 and Mk2 and 5DMk 3 and Mk4.

The two controls on both Nikon and Canon dictate the auto focus SOLUTION spat out by the PREDICTIVE AF ALGORITHMS contained in the cameras AF engine processors.

The subjects degree and type of motion RELATIVE to the camera position DEMAND different setups within this control panel.  It’s all to do with the camera AF resistance to MINOR and MAJOR changes in subject position between one frame and the next.

If you want a definitive understanding of all this then go and purchase my Autofocus Guide to Nikon and Canon AF for Long Lenses and Birds in Flight by clicking this link.

So this is the problem with the Nikon Z7 – because it’s utilizing so-called ‘on chip phase detect’ – which isn’t phase detect at all in reality – you cannot get control of these variable functions because they don’t exist in the cameras menu/firmware.

As far as I’m aware these sorts of controls are not available on the Sony cameras either.

But there is still a form of predictive AF algorithm at work in all mirrorless cameras, and it would appear that the one inside the Nikon Z7 is really poor in the way it’s balanced out with regard to it coping with moving subjects – especially those that move somewhat erratically and towards the camera.

Understand this people, the Nikon Z7 is a glorified D5000 that is not worth half the price you’ll have to pay for it.

Mirrorless systems have certain advantages over traditional dSLR systems:

  • Reduction in Shutter Lag times
  • Removal of Mirror Slap vibrations
  • Reduction of Weight leading to Greater Portability

But on-chip phase detection isn’t real phase detection, and it will not (for the foreseeable future) be anywhere near as fast or accurate as CORRECTLY setup phase detect autofocus on a top flight dSLR.

A sequence of 77 raw files that are all tack sharp and cover around 12 seconds of time – no mirrorless system is capable of doing this to the same degree of consistency as a correctly set dSLR.

The dSLR is NOT DEAD!

Don’t believe me?

Licensed Formula 1 pit and circuit access photographers make a very good living, and they stand or fall by the reliability of their camera gear.  But they are all business people at the end of the day.

If a Sony A9 and that fancy 400mm Sony lens was as reliable as the Sony fanboys claim it is, then why will we not see a plethora of Sony rigs at Suzuka on Sunday?  Just a thought…

But for heavens sake folks, if you have a hankering for a Nikon Z7 then PLEASE think about it – make yourself aware of the FACTS before you blow your wodge of wonga!

It’s NOT a professional camera in any way shape or form, and Dirk Jasper of Nikon Europe even says that – watch the video below at 19mins 48sec:

NOTE TO NIKON:  If you want to try and get me to change my mind then all you have to do is send me one guys!

I promise I won’t lick it or sniff it like that Jared Polin idiot!

 

 

Autofocus Guide for Long Lens Bird in Flight Photography

GX2R2055-Edit-2

My Autofocus Guide for Bird in Flight Photography is finished and available for download in my online store – here, priced £29.00

The download is in the no-frills .pdf format.

This is my ‘real world’ guide to Canon & Nikon Autofocus which is specifically aimed at photographers using long lenses for Bird in Flight photography.

I sell my full resolution wildlife and natural history images every day via the various global image libraries to which I am a contributor.  The largest percentage of these sales are Birds in Flight.

Image libraries demand tack sharp, full resolution uploads from their contributors;  even marginal sharpness will result in an image being rejected by Quality Control.

A large male White-tailed eagle, locally known as "Brutus", carrying a very large Coalfish which he has just caught.

A large male White-tailed eagle, locally known as “Brutus”, carrying a very large Coalfish.

In this guide, I take you right back to the basics of subject speed and distance; and how this impacts on our choice of camera body and lens focal length and working aperture.

A Red Kite in a fast dive against a blue sky.

A Red Kite in a fast dive against a blue sky.

You’ll learn how phase detection autofocus works – only by really understanding how your autofocus system works, and what its control settings actually do, will you truly be able to control it in the way you need to for the particular task at hand.

I give you exposure and autofocus control settings for both Canon and Nikon, based on ‘real world’ full resolution images – settings that actually work, and do the job you expect them to do.

We also discover the various ‘tips ‘n tricks’ we need to know to help the autofocus system do the job we are asking it to do.

We also look at the short-comings of both the Nikon and Canon systems, and how to work around them in order to produce tack sharp images of birds in flight – HAND HELD – forget that tripod; you can’t move fast enough with one!

Photographers who have read this guide as it was being written have called it ‘the definitive guide’.  I’m not going to be so big-headed as to promote it as such myself, but I will say that it’s taken a while to produce, is pretty darn thorough, and I have the shots to prove it!

Available for purchase in my online store right now.

Please Note: This document relates to LONG LENS continuous auto focus tracking in Nikon AFC and Canon AI Servo modes in conjunction with continuous shooting modes on Nikon D4/4S and Canon 1Dxbodies with v2 firmware or higher, and is primarily related to capturing Birds in Flight and other fast-paced wildlife action photography.
Canon 5DMk3/7DMk2 users will also find this guide very useful, as will non-wildlife shooters.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Image Sharpness

Image Sharpness

I spent the other afternoon in the Big Tower at Gigrin, in the very pleasant company company of Mr. Jeffrey “Jeffer-Cakes” Young.    Left arm feeling better yet Jeff?

I think I’m fairly safe in saying that once feeding time commenced at 3pm it didn’t take too long before Jeff got a firm understanding of just how damn hard bird flight photography truly is – if you are shooting for true image sharpness at 1:1 resolution.

I’d warned Jeff before-hand that his Canon 5Dmk3 would make his session somewhat more difficult than a 1Dx, due to it’s slightly less tractable autofocus adjustments.  But that with his 300mm f2.8 – even with his 1.4x converter mounted, his equipment was easily up to the job at hand.

I on the other hand was back on the Nikon gear – my 200-400 f4; but using a D4S I’d borrowed from Paul Atkins for some real head-to-head testing against the D4 (there’s a barrow load of Astbury venom headed Nikon’s way shortly I can tell you….watch this space as they say).

Amongst the many topics discussed and pondered upon, I was trying to explain to Jeff the  fundamental difference between ‘perceived’ and ‘real’ image sharpness.

Gigrin is a good place to find vast armies of ‘photographers’ who have ZERO CLUE that such an argument or difference even exists.

As a ‘teacher’ I can easily tell when I’m sharing hide space with folk like this because they develop quizzical frowns and slightly self-righteous smirks as they eavesdrop on the conversation between my client and I.

“THEY” don’t understand that my client is wanting to achieve the same goal as the one I’m always chasing after; and that that goal is as different from their goal as a fillet of oak-smoked Scottish salmon is from a tin of John West mush.

I suppose I’d better start explaining myself at this juncture; so below are two 800 pixel long edge jpeg files that you typically see posted on a nature photography forum, website or blog:

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 1. Red Kite – Nikon D4S+200-400 f4 – CLICK IMAGE to view properly.

Click the images to view them properly.

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 2. Red Kite – Nikon D4S+200-400 f4 – CLICK IMAGE to view properly.

“THEY” would be equally as pleased with either…..!

Both images look pretty sharp, well exposed and have pretty darn good composition from an editorial point of view too – so we’re all golden aren’t we!

Or are we?

Both images would look equally as good in terms of image sharpness at 1200 pixels on the long edge, and because I’m a smart-arse I could easily print both images to A4 – and they’d still look as good as each other.

But, one of them would also readily print to A3+ and in its digital form would get accepted at almost any stock agency on the planet, but the other one would most emphatically NOT pass muster for either purpose.

That’s because one of them has real, true image sharpness, while the other has none; all it’s image sharpness is perceptual and artificially induced through image processing.

Guessed which is which yet?

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 1 at 1:1 native resolution – CLICK IMAGE to view properly.

Image 1. has true sharpness because it is IN FOCUS.

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 2 at 1:1 native resolution – CLICK IMAGE to view properly.

And you don’t need glasses to see that image 2 is simply OUT OF FOCUS.

The next question is; which image is the cropped one – number 2 ?

Wrong…it’s number 1…

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

Image 1 uncropped is 4928 pixels long edge, and cropped is 3565, in other words a 28% crop, which will yield a 15+ inch print without any trouble whatsoever.

Image 2 is NOT cropped – it has just been SHRUNK to around 16% of its original size in the Lightroom export utility with standard screen output sharpening.  So you can make a ‘silk purse from a sows ear’ – and no one would be any the wiser, as long as they never saw anything approaching the full resolution image!

Given that both images were shot at 400mm focal length, it’s obvious that the bird in image 1 (now you know it’s cropped a bit) is FURTHER AWAY than the bird in image 2.

So why is one IN FOCUS and the other not?

The bird in image 1 is ‘crossing’ the frame more than it is ‘closing in’ on the camera.

The bird in image 2 is closer to the camera to begin with, and is getting closer by the millisecond.

These two scenarios impose totally different work-loads on the autofocus system.

The ability of the autofocus system to cope with ANY imposed work-load is totally dependent upon the control parameters you have set in the camera.

The ‘success’ rate of these adjustable autofocus parameter settings is effected by:

  1. Changing spatial relationship between camera and subject during a burst of frames.
  2. Subject-to-camera closing speed
  3. Pre-shot tracking time.
  4. Frame rate.

And a few more things besides…!

The autofocus workloads for images 1 & 2 are poles apart, but the control parameter settings are identical.

The Leucistic Red Kite in the shot below is chugging along at roughly the same speed as its non-leucistic cousin in image 2. It’s also at pretty much the same focus distance:

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

Image 3. Leucistic Red Kite – same distance, closing speed and focal length as image 2. CLICK IMAGE to view larger version.

So why is image 3 IN FOCUS when, given a similar scenario, image 2 is out of focus?

Because the autofocus control parameters are set differently – that’s why.

FACT: no single combination of autofocus control parameter settings will be your ‘magic bullet’ and give you nothing but sharp images with no ‘duds’ – unless you use a 12mm fish-eye lens that is!

Problems and focus errors INCREASE in frequency in direct proportion to increasing focal length.

They will also increase in frequency THE INSTANT you switch from a prime lens to a zoom lens, especially if the ‘zoom ratio’ exceeds 3:1.

Then we have to consider the accuracy and speed of the cameras autofocus system AND the speed of the lens autofocus motor – and sadly these criteria generally become more favourable with an increased price tag.

So if you’re using a Nikon D800 with an 80-400, or a Canon 70D with a 100-400 then there are going to be more than a few bumps in your road.  And if you stick to just one set of autofocus control settings all the time then those bumps are going to turn into mountains – some of which are going to kill you off before you make their summit….metaphorically speaking of course!

And God forbid that you try this image 3 ‘head on close up’ malarkey with a Sigma 50-500 – if you want that level of shot quality then you might just as well stay at home and save yourself the hide fees and petrol money !

Things don’t get any easier if you do spend the ‘big bucks’ either.

Fast glass and a pro body ‘speed machine’ will offer you more control adjustments for sure.  But that just means more chances to ‘screw things up’ unless you know EXACTLY how your autofocus system works, exactly what all those different controls actually DO, and you know how to relate those controls to what’s happening in front of you.

Whatever lens and camera body combination any of us use, we have to first of all find, then learn to work within it’s ‘effective envelope of operation’ – and by that I mean the REAL one, which is not necessarily always on a par with what the manufacturer might lead you to believe.

Take my Nikon 200-400 for example.  If I used autofocus on a static subject, let alone a moving one, at much past 50 metres using the venerable old D3 body and 400mm focal length, things in the critical image sharpness department became somewhat sketchy to say the least.  But put it on a D4 or D4S and I can shoot tack sharp focussing targets at 80 to 100 metres all day long……not that I make a habit of this most meaningless of photographic pastimes.

That discrepancy is due to the old D3 autofocus system lacking the ability to accurately  discriminate between precise distances from infinity to much over 50 metres when that particular lens was being used. But swap the lens out for a 400 f2.8 prime and things were far better!

Using the lens on either a D4 or D4S on head-on fast moving/closing subjects such as Mr.Leucistic above, we hit another snag at 400mm – once the subject is less than 20 metres away the autofocus system can’t keep up and the image sharpness effectively drops off the proverbial cliff.  But zoom out to 200mm and that ‘cut-off’ distance will reduce to 10 metres or so. Subjects closing at slower speeds can get much closer to the camera before sharp focus begins to fail.

As far as I’m concerned this problem is more to do with the speed of the autofocus motor inside the lens than anything else.  Nikon brought out an updated version of this lens a few years back – amongst its ‘star qualities’ was a new nano-coating that stopped the lens from flaring.  But does it focus any faster – does it heck!  And my version doesn’t suffer from flare either….!

Getting to know your equipment and how it all works is critical if you want your photography to improve in terms of image sharpness.

Shameless Plug Number 1.

I keep mentioning it – my ebook on Canon & Nikon Autofocus with long glass.

Understanding Canon & Nikon Autofocus

for

Bird in Flight Photography

Understanding Canon & Nikon Autofocus for Bird in Flight Photography

Click Image for details.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.