Exposure Value – What does it mean?

Exposure Value (Ev) – what does Ev mean?

I get asked this question every now and again because I frequently use it in the description annotations of image shot data here on the blog.

And I have to say from the outset the Exposure Value comes in two flavours – relative and absolute – and here I’m only talking mainly about the former.

So, let’s start with basic exposure.

Exposure can be thought of as Intensity x Time.

Intensity is controlled by our aperture, and time is controlled by our shutter speed.

This image was shot at 0.5sec (time), f11 (intensity) and ISO 100.

exposure value

We can think of the f11 intensity of light striking the sensor for 0.5sec as a ‘DOSAGE’ – and if that dosage results in the desired scene exposure then that dosage can be classed as the exposure value.

Let’s consider two exposure settings – 0.5sec at f11 ISO100 and 1sec at f16 ISO 100.

Technically speaking they are two different exposures, but BOTH result in the same light dosage at the sensor.  The second exposure is TWICE the length of time but HALF the intensity.

So both exposures have the same Exposure Value or Ev.

The following exposure of the same scene is 1sec at f11 ISO 100:

exposure value

The image was shot at the same intensity (f11) but the shutter speed (time) was twice as long, and so the dosage was doubled.  Double the dose = +1Ev!

And in this version the exposure was 0.25sec at f11 ISO 100:

exposure value

Here the light dosage at the sensor is HALF that of the correct/desired exposure because the time factor was halved while using the same intensity.

So half the dose = -1Ev!

Now some of you will be thinking that -1Ev is 1 stop under exposure – and you’d be right!

But Ev, or exposure value, is just a cleaner way of thinking about exposure because it doesn’t tie you to any specific camera setting – and it’s more easily transferable between cameras.

What Do I Mean by that?

Example – If I use say a 50mm prime lens on my Nikon D800E with the metering in matrix mode, ISO 100 and f14 I might get a metered exposure shutter speed of 1/10th of a second.

But if I replace the D800E with a D4 set at 100 ISO, matrix and f14 I’ll guarantee the metered shutter speed requirement will be either 1/13 or 1/15th of a second.

The D4 meters between -1/3Ev and -2/3Ev (in other words 1/2 stop) faster/brighter than the D800E when fitted with the same lens and set to the same aperture and ISO, and shooting exactly the same framing/composition.

Yet the ‘as metered’ shots from both cameras look pretty much the same with respect to light dosage – exposure value.

Exposure Settings Don’t Transfer between camera models very well, because the meter in a camera is calibrated to the response curve of the sensor.

A Canon 1DX Mk2 will usually generate a evaluative metered shutter speed 1/3rd of a stop faster than a matrix metered Nikon D4S for the same given focal length, aperture and ISO setting.

Both setups ‘as metered’ shots will look pretty much the same, but transposing the Canon settings to the Nikon will result in -1/3 stop under exposure – which on a digital camera is definitely NOT the way to go!

‘As Metered’ can be regarded as +/-0Ev for any camera (Note: this does NOT mean Ev=0!)

Any exposure compensation you use in order to achieve the ‘desired’ exposure on the other hand can be thought of as ‘metered + or – xEv’.

exposure compensation

Shot with the D4 plus 70-200 f2.8@70mm in manual exposure mode, 1/2000th sec, f8 and ISO 400 using +2/3Ev compensation.

The matrix metered exposure indicated by the camera before the exposure value compensation was 1/3200th – this would have made the Parasitic Jaeger (posh name for an Arctic Skua!) too dark.

A 1DXMk2 using the corresponding lens and focal length, f8, ISO 400 and evaluative metering would have wanted to generate a shutter speed of at least 1/4000th sec without any exposure compensation, and 1/2500th with +2/3Ev exposure compensation.

And if shot at those settings the Canon image would look pretty much like the above.

But if the Nikon D4 settings had been fully replicated on the Canon then the shot would be between 1/3 and 1/2 stop over exposed, risking ‘blowing’ of some of the under-wing and tail highlights.

So the simple lesson here is don’t use other photographers settings – they never work unless you’re on identical gear! 

But if you are out with me and I tell you “matrix/evaluative plus 1Ev” then your exposure will have pretty much the same ‘light dosage’ as mine irrespective of you using the right shutter speed, aperture or ISO for the job or not!

I was brought up to think in terms of exposure value and Ev units, and to use light meters that had Ev scales on them – hell, the good ones still have ’em!

If you look up the ‘tech-specs’ for your camera you’ll find that metering sensitivity is normally quoted as an Ev range.  And that’s not all – your auto focus may well have a low light Ev limited quoted too!

To all intents and purposes Ev units and your more familiar ‘f-stops’ amount to one and the same thing.

As we’ve seen before, different exposures in terms of intensity and time can have the same exposure value, and all Ev is concerned with is the cumulative outcome of our shutter speed, aperture and ISO choices.

Most of you will take exposures at ‘what the camera meter says’ settings, or you will use the meter indicated exposure as a baseline and modify the exposure settings with either positive or negative ‘weighting’ via your exposure compensation dial.

That’s Ev compensation relative to your meters baseline.

But have you ever asked yourself just how accurate your camera meter is?

So I’ve just stepped outside my front door and taken these two frames:

exposure value

EV=15/Sunny 16 Rule 1/100th sec, f16, 100 ISO – click to view large.

exposure value

Matrix Metering, no exposure compensation 1/200th sec, f16, ISO 100 – click to view large

These two raw files have been brought into Lightroom and THE ONLY adjustment has been to change the profile from Adobe Color to Camera Neutral.

Members of my subscription site can download the raw files and see for themselves.

Look at the histogram in both images!

The exposure for xxx164.NEF (the top image) is perfection personified while xxx162.NEF is under exposed by ONE WHOLE STOP – why?

Because the bottom image has been shot at the camera-specified matrix metered exposure, while the top image has been shot using the good old ‘Sunny 16 Rule’ that’s been around since God knows when!

“Yeah, but I could just use the shadow recovery slider on the bottom shot Andy….”  Yes, you could, if you wanted to be an idle tit, and even then the top image would still be better because there’s no ‘recovery’ being used on it in the first place.  Remember, more work at the camera means less work in processing!

Recovery of either shadows or highlights is ‘poor form’ and no substitute for correct exposure in the first place. Digital photography is just like shooting colour transparency film – you need to ‘peg the highlights’ as highlights BUT without over exposing them and causing them to ‘blow’.

In other words – ETTR, expose to the right!

And seeing as your camera meter wants to turn everything into midtone grey shite it’s the very last thing you should ever allow to dictate your final exposure settings – as the two images above prove beyond argument.

And herein lies the problem.

Even if you use the spot metering function the meter will read the brightness of what is covered by the ‘spot’ and then calculate the exposure required to expose that tonal brightness AS A MID TONE GREY.

That’s all fine ‘n dandy – if the metered area is actually an exact mid tone.  But what if you were metering a highlight?

Then the metered exposure would want to expose said highlight as a midtone and the overall highlight exposure would be far too dark.  And you can guess what would happen if you trusted your meter to spot-read a shadow.

A proper hand-held spot meter has an angle of view or AoV of 1 degree.

Your camera spot meter angle of view is dictated by the focal length of the lens you have fitted.

On my D800E for example, I need to have a lens AoV of around 130mm focal length equivalent for my spot to cover 1 degree, because the ‘spot’ is 4mm in diameter – total stupidity.

But it does function fairly well with wider angle lenses and exposure calculations when used in conjunction with the live view histogram.  And that will be subject of my next blog post – or perhaps I’ll do a video for YouTube!

So I doubt this blog post about relative exposure compensation is going to light your world on fire – it began as an explanation to a recurring question about my exif annotation habits and snowballed somewhat from there!

But I’ll leave you with this little guide to the aforementioned Sunny 16 Rule, which has been around since Noah took up boat-building:

To use this table just set your ISO to 100.

Your shutter speed needs to be the reciprocal of your ISO – in other words 1/100 sec for use with the stated aperture values:

Aperture Lighting conditions Shadow PROPERTIES
f/22* Snow/sand Dark with sharp edges
f/16 Sunny Distinct
f/11 Slight overcast Soft around edges
f/8 Overcast Barely visible
f/5.6** Heavy overcast No shadows
f/4 Open shade/sunset No shadows

* – I would not shoot at f22 because of diffraction – try 1/200th f16

** – let’s try some cumulative Ev thinking here and go for more depth of field using f11 and sticking with 100 ISO. -2Ev intensity (f5.6 to f11) requires +2Ev on time, so 1/100th sec becomes 1/25th sec.

Over the years I’ve taken many people out on photo training days, and a lot of them seem to think I’m some sort of magician when I turn their camera on, switch it manual, dial in a couple of settings and produce a half decent image without ever looking at the meter on their camera.

It ain’t magic – I just had this table burnt into the back of my eyeballs years ago.

Works a charm – if you can do the mental calculations in your head, and that’s easy with practice.  The skill is in evaluating your shooting conditions and relating them to the lighting and shadow descriptions.

And here’s a question for you; we know our camera meter wants to ‘peg’ what it’s measuring as a midtone irrespective of whether it’s measuring a midtone or not.  But what do you think the Sunny 16 Rule is ‘pegging’ and where is it pegging it on the exposure curve?

If you can answer that question correctly then the other flavour of exposure value – absolute – might well be of distinct interest to you!

Give it a try, and if you use it correctly you’ll never be more than 1/3rd of a stop out, if that.  Then you can go and unsubscribe from all those twats on YouTube who told you it was out-dated and defunct or never told you about it in the first place!

I hope you’ve found the information in this post useful.

I don’t monetize my YouTube videos or fill my blog posts with masses of affiliate links, and I rely solely on my patrons to help cover my time and server costs. If you would like to help me to produce more content please visit my Patreon page on the button above.

Many thanks and best light to you all.

Astro Landscape Photography

Astro Landscape Photography

Astro Landscape Photography

One of my patrons, Paul Smith, and I ventured down to Shropshire and the spectacular quartsite ridge of The Stiperstones to get this image of the Milky Way and Mars (the large bright ‘star’ above the rocks on the left).

I always work the same way for astro landscape photography, beginning with getting into position just before sunset.

Using the PhotoPills app on my phone I can see where the milky way will be positioned in my field of view at the time of peak sky darkness.  This enables me to position the camera exactly where I want it for the best composition.

The biggest killer in astro landscape photography is excessive noise in the foreground.

The other problem is that foregrounds in most images of this genre are not sharp due to a lack of depth of field at the wide apertures you need to shoot the night sky at – f2.8 for example.

To get around this problem we need to shoot a separate foreground image at a lower ISO, a narrower aperture and focused closer to the camera.

Some photographers change focus, engage long exposure noise reduction and then shoot a very long exposure.  But that’s an eminently risky thing to do in my opinion, both from a technical standpoint and one of time – a 60 minute exposure will take 120 minutes to complete.

The length of exposure is chosen to allow the very low photon-count from the foreground to ‘build-up’ on the sensor and produced a usable level of exposure from what little natural light is around.

From a visual perspective, when it works, the method produces images that can be spectacular because the light in the foreground matches the light in the sky in terms of directionality.

Light Painting

To get around the inconvenience of time and super-long exposures a lot of folk employ the technique of light painting their foregrounds.

Light painting – in my opinion – destroys the integrity of the finished image because it’s so bloody obvious!  The direction of light that’s ‘painted’ on the foreground bares no resemblance to that of the sky.

The other problem with light painting is this – those that employ the technique hardly ever CHECK to see if they are in the field of view of another photographer – think about that one for a second or two!

My Method

As I mentioned before, I set up just before sunset.  In the shot above I knew the milky way and Mars were not going to be where I wanted them until just after 1am, but I was set up by 9.20pm – yep, a long wait ahead, but always worth the effort.

Astro Landscape Photography

As we move towards the latter half of civil twilight I start shooting my foreground exposure, and I’ll shoot a few of these at regular intervals between then and mid nautical twilight.

Because I shoot raw the white balance set in camera is irrelevant, and can be balanced with that of the sky in Photoshop during post processing.

The key things here are that I have a shadowless even illumination of my foreground which is shot at a low ISO, in perfect focus, and shot at say f8 has great depth of field.

Once deep into blue hour and astronomical twilight the brighter stars are visible and so I now use full magnification in live view and focus on a bright star in the cameras field of view.

Then it’s a waiting game – waiting for the sky to darken to its maximum and the Milky Way to come into my desired position for my chosen composition.

Shooting the Sky

Astro landscape photography is all about showing the sky in context with the foreground – I have absolutely ZERO time for those popular YouTube photographers who composite a shot of the night sky into a landscape image shot in a different place or a different angle.

Good astro landscape photography HAS TO BE A COMPOSITE though – there is no way around that.

And by GOOD I mean producing a full resolution image that will sell through the agencies and print BIG if needed.

The key things that contribute to an image being classed good in my book are simple:

  • Pin-point stars with no trailing
  • Low noise
  • Sharp from ‘back’ to ‘front’.

Pin-points stars are solely down to correct shutter speed for your sensor size and megapixel count.

Low noise is covered by shooting a low ISO foreground and a sequence of high ISO sky images, and using Starry Landscape Stacker on Mac (Sequator on PC appears to be very similar) in conjunction with a mean or median stacking mode.

Further noise cancelling is achieved but the shooting of Dark Frames, and the typical wide-aperture vignetting is cancelled out by the creation of a flat field frame.

And ‘back to front’ image sharpness should be obvious to you from what I’ve already written!

So, I’ll typically shoot a sequence of 20 to 30 exposures – all one after the other with no breaks or pauses – and then a sequence of 20 to 30 dark frames.

Shutter speeds usually range from 4 to 6 seconds

Watch this video on my YouTube Channel about shutter speed:

Best viewed on the channel itself, and click the little cog icon to choose 1080pHD as the resolution.

Putting it all Together

Shooting all the frames for astro landscape photography is really quite simple.

Putting it all together is fairly simple and straight forward too – but it’s TEDIOUS and time-consuming if you want to do it properly.

The shot above took my a little over 4 hours!

And 80% of it is retouching in Photoshop.

I produce a very extensive training title – Complete Milky Way Photography Workflow – with teaches you EVERYTHING you need to know about the shooting and processing of astro landscape photography images – you can purchase it here – and if you use the offer code MWAY15 at the checkout you’ll get £15 off the purchase price.

But I wanted to try Raw Therapee for this Stiperstones image, and another of my patrons – Frank – wanted a video of processing methodology in Raw Therapee.

Easier said than done, cramming 4 hours into a typical YouTube video!  But after about six attempts I think I’ve managed it, and you can see it here, but I warn you now that it’s 40 minutes long:

Best viewed on the channel itself, and click the little cog icon to choose 1080pHD as the resolution.

I hope you’ve found the information in this post useful, together with the YouTube videos.

I don’t monetize my YouTube videos or fill my blog posts with masses of affiliate links, and I rely solely on my patrons to help cover my time and server costs.  If you would like to help me to produce more content please visit my Patreon page on the button above.

Many thanks and best light to you all.

ETTR Processing in Lightroom

ETTR Processing in Lightroom

When we shoot ETTR (expose to the right) in bright, harsh light, Lightroom can sometimes get the wrong idea and make a real ‘hash’ of rendering the raw file.

Sometimes it can be so bad that the less experienced photographer can get the wrong impression of their raw file exposure – and in some extreme cases they may even ‘bin’ the image thinking it irretrievably over exposed.

I’ve just uploaded a video to my YouTube channel which shows you exactly what I’m talking about:

The image was shot by my client and patron Paul Smith when he visited the Mara back in October last year,  and it’s a superb demo image of just how badly Lightroom can demosaic a straight forward +1.6 Ev ETTR shot.

Importing the raw file directly into Lightroom gives us this:

ETTR

But importing the raw file directly into RawTherapee with no adjustments gives us this:

ETTR

Just look at the two histogram versions – Lightroom is doing some crazy stuff to the image ‘in the background’ as there are ZERO develop settings applied.

But if you watch the video you’ll see that it’s quite straight forward to regain all that apparent ‘blown detail’.

And here’s the important bit – we do so WITHOUT the use of the shadow or highlight recovery sliders.  Anyone who has purchased my sharpening videos HERE knows that those two sliders can VERY EASILY cause undesirable ‘pseudo-sharpening’ halos, and they should only be used with caution.

ETTR

The way I process this +1.6 stop ETTR exposure inside Lightroom has revealed all the superb mid tone detail and given us a really good image that we could take into Photoshop and improve with some precision localized adjustments.

So don’t let Lightroom control you – you need to control IT!

Thanks for reading and watching.

You can also view this post on the free section of my Patreon pages HERE

If you feel this article and video has been beneficial to you and would like to see more per week, then supporting my Patreon page for as little as $1 per month would be a massive help.  Thanks everyone!

 

Irix Edge Filters

Irix Edge Filters

A few weeks ago, Irix dropped me a set of their Edge 95mm screw-in filters to try on their fabulous 15mm Blackstone lens.

Irix Edge Filters

Now before we go any further, I have to say, that filters for landscape photography can represent something of a bottomless pit of expenditure in your photography gear.

I see folk with vast numbers of filters; NDs, grad NDs, tint and temp grads, fogs and soft focus filters and all sorts of exotic bits of glass and acrylic to stick on the front of their superb (and sometimes not so superb) landscape lenses.

Some of those same folk then look inside my bag in horror when they see that I only carry 3 filters – a 10 stop ND, 6 stop ND and polarizer.

I gave up using ND grads years ago, simply because they are time-consuming, and because if your horizon is not perfectly flat they will always effect the exposure of your middle to far foreground in some way or other.

For me, I find it far faster to shoot a bracketed sequence.

When your are shooting under very transient light conditions, such as sunset and twilight, time spent choosing and lining up a grad ND is time lost.

Followers of this blog will know that I have Lee SW150 and Lee 100 systems, both with 10 stop and 6 stop NDs and a polariser – the SW150 a circular, and the 100 system is a linear.  I’d have linear for the 150 system if they made one, simply on the grounds that they are normally cheaper – and I’m a tight-ass cheapskate!

When Irix sent the 15mm Blackstone for review, I purchased the Lee SW150 adapter ring for 95mm thread lenses – it works well and I can’t fault it.

But, I had the insanely expensive SW150 system holder and glass filters ALREADY, because I used them on the 14-24mm f2.8 Nikkor, and sometimes on my beloved Zeiss 21mm.

When I originally reviewed the 15mm Irix Blackstone there was really no other option for filtration.

But this new range of 95mm Irix Edge Filters now means that landscape photographers can have the necessary filtration without having to go with any form of 150mm filter system.

The 95mm Irix Edge Filters range.

Irix Edge Filters

The packaging is robust and keeps the filters safe.  The card outer sleeve tells you what filter is inside,  though if you remove/loose it then you have to open the case and examine the edge of the filter to see the same information – it’s the only niggle I have, and it’s a minor one and certainly not a deal-breaker.

Though our Richard might argue that point after sprinting along the side of Howden reservoir after one that blew away in the wind yesterday!

But it would be nice of Irix to put the information inside the case so you could see it without faffing around – it all saves time, and time can be of the essence!

The filter range consists of:

A UV/Lens Protect – you all know my attitude to these by now!

Circular Polariser – this is mounted in a low profile 5mm frame with knurled edges, and has a double-sided anti-reflective nano coating.  AND – it is front-threaded to allow for a certain amount of stacking with other filters in the range – more on that shortly.

ND 8, 32, 128 & 1000 Neutral Density – these ND filters are all built in a 3.5mm metal frame, so are super low-profile.  They are all front-threaded and have the Irix double-sided anti reflective coatings.

ND filter terminology:

This seems to confuse a lot of people, which I suppose is understandable because different manufacturers persist in using different, and in the case of Lee for instance, MIXED terminologies.

So let’s try and break this down for you.

A one stop drop in exposure results in HALF the amount of light reaching the sensor/film plane.

A half is represented by the fraction ‘1/2’.

Irix, and others, take the denominator (bottom number of the fraction), stick the letters N & D in front of the said denominator, and now we have the filter value of ND2.

So, an ND2 neutral density filter is a ONE STOPPER – to use one particular Lee parlance!

If we reduce our exposure by 3 stops (that’s half of a half of a half, in other words 1/8th) then an ND8 filter is a THREE STOPPER!

An ND32 is a FIVE STOPPER, and ND128 is a SEVEN STOPPER.

And finally, an ND1000 (which is actually an ND1024!) is a TEN STOPPER – of Lee Big Stopper fame.

However, an ND1000 (ND1024) can also be classed in the ‘X.Y’ system as ND3.0 – oh dear!

The ‘X.Y’ (x point y) system is most commonly encountered with ND Grads – for example the Lee Soft-edged ND Grad set featuring 0.3, 0.6 & 0.9 ND Grads.

A 0.3 ND is the same as an ND2 – a ONE STOPPER, a 0.6ND is a two stop or ND4 and a 0.9ND is a 3 stop or ND8 – don’t you just love it!!

So hopefully we’ve cleared any confusion over ND stop values, so let’s get back to the Irix Edge Filters and my thoughts on how they perform.

If you click this link HERE you will be taken to page where, if you scroll to the bottom, you can watch a video of me doing a couple of shots at Salford Quays the other day.  I didn’t have my glasses on for the ‘talk to the camera bit’ and so made a slight screw up when talking about the focus scales – watch it and you’ll see!  And I’ve been told that I must apologise for inferring that Salford Quays is in Manchester!

Anyway, here are the two shots we did in the video:

Irix Edge Filters

Media City Footbridge, Salford Quays.

Irix Edge Filters

Salford Quays, NOT in Manchester! Irix Edge Polariser stacked with the Irix Edge ND1000

The first image (Media City Footbridge) is shot with just the 95mm Irix Edge Filters circular polariser.

Conditions were vile with sun and rain in rapid succession and the shot will never win any prizes, but it does help show that the filter does not effect sharpness in the image, and is a lot more colour-neutral than a lot of CPLs out there on the market.

The second shot is with the ND1000 stacked on top of the CPL – and again there is no noticeable lack of sharpness.

When you stack the filters there IS a SMALL amount of vignetting as seen in the uncropped/unedited raw file below:

Irix Edge FiltersBut that’s easily taken care with a little bit of content aware fill in Photoshop, so you don’t HAVE to crop it out:

Irix Edge Filters

And just for reference, here’s the unfiltered scene:

Irix Edge Filters

God – how boring!

As a final testament to the stacked CPL + ND1000 Irix Edge Filters combo, here’s a shot from Howden Reservoir in the Peak District, taken yesterday directly into the teeth of ex-hurricane Ophelia:

Irix Edge Filters

Howden Reservoir during Ophelia.

If you look at the larger image, considering the fact that this is a 15 second exposure and that everything not nailed down is moving, then this image is plenty sharp enough – check out the fence lines on the hill, and the left tower of the dam in the distance.

Do NOT forget, this is a 15mm lens, not a more conventional 21mm to 24mm lens.

I could not pull this shot off with a Zeiss 15mm – no filters and bad edge performance.  And I couldn’t pull it off as easily with the Nikon 14-24mm because the filters would have been unshaded from the sunlight off to my front right.

I was asked a couple of weeks ago ‘how neutral are the Irix Edge Filters Andy’?

It turns out the person who asked me had just read about some U.S branded CPL and ND filters that are supposed to be the most color-neutral filters on the market.  This is also the same guy who still uses a Mark 1 Lee Big Stopper with its phenomenal blue/green cast.

“Do you ever change the colour balance, hue, saturation or luminance of any of your 8 colour channels in Lightroom, and the Basics Panel vibrance and saturation sliders?” I asked.

“Of course I do” came the reply.

“So why are you asking about filter neutrality then?” asks I.  This was followed by a long silence, then the penny dropped…!

Yes, we all want some degree of filter neutrality because it shortens our workflow; but please remember that we are not shooting archive.  We shoot creative imagery.  We make shots of ice bergs have a blue tint to emphasize the cold atmospheric of the image, and we invariably warm up and saturate certain areas of every sunset image we ever take.

So to a large degree, full neutrality of of our landscape filters is not required, as long as they are neutral enough NOT to exclude certain wavelengths/colours of light from our recorded raw files.

And yes, on the neutrality front, these Irix filters are very good.  The ND1000 is a little brown/warmish, but about 20% less so than the B&W screw in 10 stop I used to use – and no one ever complained about that filter.

I did a very ‘Heath Robinson’ test on the Irix 95mm CPL and got a colour shift of 2,7,5 RGB, but I’m just waiting for Paul Atkins to get back of his holiday so I can use his small colourimeter to check it more accurately – so PLEASE don’t go quoting that value or treating it as hard fact.

I’ll do an colour shift evaluation test on a range of filters at some date in the future, but for now all I can say is that I find the 95mm range of Irix Edge Filters exceptionally easy to work with both in terms of colour rendition and image sharpness.

So much so that I’m going to try and ‘bum’ an 82mm and 77mm step-down rings so I can use them on my Zeiss and Nikon lenses – apart from the 14-24 that is, which is now banished from my landscape and astro gear line-up for ever.

In the meantime, guess what? Irix have asked me to do a talk at Camera World Live on Saturday 28th October!

I’ll be doing my brief talk at 3pm and I’ll be on the Irix stand all day, so if you are there, just pop along for a chat or any advise you want.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Image Retouching

 Image Retouching in Photoshop CC 2014

It’s very rare that we ever get a frame from our camera that doesn’t need retouching – that’s a FACT.

Imperfections in the frame can be both ‘behind the shutter’ and ‘in front of the lens’ – sensor dust and crud on the subject.  But you’ll take photographs where these imperfections are hard, if not impossible, to see under normal viewing.

But print that image BIG and those invisible faults will begin to be visually apparent; by which time it’s too bloomin’ late and they’ve cost you money; or worse still, a client.

The ‘visualise spots’ tool in Lightroom will show you a certain amount of ‘dust bunny’ type faults and errors, but the way Lightroom executes retouching repairs is not always ‘quite up to snuff’; and when it comes to dust, crap and other undesirables on the subject itself Lightroom will fail to recognise them in the first place.

Image retouching isn’t really all that difficult; but it can be an intensely tedious and time-consuming process.

To that end I’ve stuck these HD video lessons on my You Tube channel.

In these videos I illustrate how I deploy the Spot Healing brush, Healing Brush, Clone Tool, Patch Tool and Content Aware Fill command to carry out some basic image retouching on a shot of cutlery bright ware.

I demonstrate the addition of a ‘dust visibility’ curves adjustment layer – something that everyone should ‘get the hang’ of using – as a first step to effective image retouching.

When photographing glossy, high reflectivity subjects we need to remove the imperfections and smooth the surfaces of the subject without reducing the ‘glossiness’ and turning it matt!

Please note: a couple of these videos are in excess of 20 minutes duration and they will look better at full resolution HDV if you click the You Tube icon. Also, it takes a lot longer to do a job when you have to talk about at the same time!

I hope you get some idea as to how simple and straightforward my approach to image retouching is!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

HDR in Lightroom CC (2015)

Lightroom CC (2015) – exciting stuff!

New direct HDR MERGE for bracketed exposure sequences inside the Develop Module of Lightroom CC 2015 – nice one Adobe!  I can see Eric Chan’s finger-prints all over this one…!

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Twilight at Porth Y Post, Anglesey.

After a less than exciting 90 minutes on the phone with Adobe this vary morning – that’s about 10 minutes of actual conversation and an eternity of crappy ‘Muzak’ – I’ve managed to switch from my expensive old single app PsCC subscription to the Photography Plan – yay!

They wouldn’t let me upgrade my old stand-alone Lr4/Lr5 to Lr6 ‘on the cheap’ so now they’ve given me two apps for half the price I was paying for 1 – mental people, but I’ll not be arguing!

I was really eager to try out the new internal ‘Merge’ script/command for HDR sequences – and boy am I impressed.

I picked a twilight seascape scene I shot last year:

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

I’ve taken a 6 shot exposure bracketed sequence of RAW files above, into the Develop Module of Lightroom CC and done 3 simple adjustments to all 6 under Auto Synch:

  1. Change camera profile from Adobe Standard to Camera Neutral.
  2. ‘Tick’ Remove Chromatic Aberration in the Lens Corrections panel.
  3. Change the colour temperature from ‘as shot’ to a whopping 13,400K – this neutralises the huge ‘twilight’ blue cast.

You have to remember that NOT ALL adjustments you can make in the Develop Module will carry over in this process, but these 3 will.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Ever since Lr4 came out we have had the ability to take a bracketed sequence in Lightroom and send them to Photoshop to produce what’s called a ’32 bit floating point TIFF’ file – HDR without any of the stupid ‘grunge effects’ so commonly associated with the more normal styles of HDR workflow.

The resulting TIFF file would then be brought back into Lightroom where some very fancy processing limits were given to us – namely the exposure latitude above all else.

‘Normal’ range images, be they RAW or TIFF etc, have a potential 10 stops of exposure adjustment, +5 to -5 stops, both in the Basics Panel, and with Linear and Radial graduated filters.

But 32 bit float TIFFs had a massive 20 stops of adjustment, +10 to -10 stops – making for some very fancy and highly flexible processing.

Now the, what’s a ‘better’ file type than pixel-based TIFF?  A RAW file……

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

So, after selecting the six RAW images, right-clicking and selecting ‘Photomerge>HDR’…

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

…and selecting ‘NONE’ from the ‘de-ghost’ options, I was amazed to find the resulting ‘merged file’ was a DNG – not a TIFF – yet it still carries the 20 stop exposure adjustment  latitude.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

This is the best news for ages, and grunge-free, ‘real-looking’ HDR workflow time has just been axed by at least 50%.  I can’t really say any more about it really, except that, IMHO of course, this is the best thing to happen for Adobe RAW workflow since the advent of PV2012 itself – BRILLIANT!

Note: Because all the shots in this sequence featured ‘blurred water’, applying any de-ghosting would be detrimental to the image, causing some some weird artefacts where water met static rocks etc.

But if you have image sequences that have moving objects in them you can select from 3 de-ghost pre-sets to try and combat the artefacts caused by them, and you can check the de-ghost overlay tick-box to pre-visualise the de-ghosting areas in the final image.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Switch up to Lightroom CC 2015 – it’s worth it for this facility alone.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Image Sharpness

Image Sharpness

I spent the other afternoon in the Big Tower at Gigrin, in the very pleasant company company of Mr. Jeffrey “Jeffer-Cakes” Young.    Left arm feeling better yet Jeff?

I think I’m fairly safe in saying that once feeding time commenced at 3pm it didn’t take too long before Jeff got a firm understanding of just how damn hard bird flight photography truly is – if you are shooting for true image sharpness at 1:1 resolution.

I’d warned Jeff before-hand that his Canon 5Dmk3 would make his session somewhat more difficult than a 1Dx, due to it’s slightly less tractable autofocus adjustments.  But that with his 300mm f2.8 – even with his 1.4x converter mounted, his equipment was easily up to the job at hand.

I on the other hand was back on the Nikon gear – my 200-400 f4; but using a D4S I’d borrowed from Paul Atkins for some real head-to-head testing against the D4 (there’s a barrow load of Astbury venom headed Nikon’s way shortly I can tell you….watch this space as they say).

Amongst the many topics discussed and pondered upon, I was trying to explain to Jeff the  fundamental difference between ‘perceived’ and ‘real’ image sharpness.

Gigrin is a good place to find vast armies of ‘photographers’ who have ZERO CLUE that such an argument or difference even exists.

As a ‘teacher’ I can easily tell when I’m sharing hide space with folk like this because they develop quizzical frowns and slightly self-righteous smirks as they eavesdrop on the conversation between my client and I.

“THEY” don’t understand that my client is wanting to achieve the same goal as the one I’m always chasing after; and that that goal is as different from their goal as a fillet of oak-smoked Scottish salmon is from a tin of John West mush.

I suppose I’d better start explaining myself at this juncture; so below are two 800 pixel long edge jpeg files that you typically see posted on a nature photography forum, website or blog:

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 1. Red Kite – Nikon D4S+200-400 f4 – CLICK IMAGE to view properly.

Click the images to view them properly.

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 2. Red Kite – Nikon D4S+200-400 f4 – CLICK IMAGE to view properly.

“THEY” would be equally as pleased with either…..!

Both images look pretty sharp, well exposed and have pretty darn good composition from an editorial point of view too – so we’re all golden aren’t we!

Or are we?

Both images would look equally as good in terms of image sharpness at 1200 pixels on the long edge, and because I’m a smart-arse I could easily print both images to A4 – and they’d still look as good as each other.

But, one of them would also readily print to A3+ and in its digital form would get accepted at almost any stock agency on the planet, but the other one would most emphatically NOT pass muster for either purpose.

That’s because one of them has real, true image sharpness, while the other has none; all it’s image sharpness is perceptual and artificially induced through image processing.

Guessed which is which yet?

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 1 at 1:1 native resolution – CLICK IMAGE to view properly.

Image 1. has true sharpness because it is IN FOCUS.

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 2 at 1:1 native resolution – CLICK IMAGE to view properly.

And you don’t need glasses to see that image 2 is simply OUT OF FOCUS.

The next question is; which image is the cropped one – number 2 ?

Wrong…it’s number 1…

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

Image 1 uncropped is 4928 pixels long edge, and cropped is 3565, in other words a 28% crop, which will yield a 15+ inch print without any trouble whatsoever.

Image 2 is NOT cropped – it has just been SHRUNK to around 16% of its original size in the Lightroom export utility with standard screen output sharpening.  So you can make a ‘silk purse from a sows ear’ – and no one would be any the wiser, as long as they never saw anything approaching the full resolution image!

Given that both images were shot at 400mm focal length, it’s obvious that the bird in image 1 (now you know it’s cropped a bit) is FURTHER AWAY than the bird in image 2.

So why is one IN FOCUS and the other not?

The bird in image 1 is ‘crossing’ the frame more than it is ‘closing in’ on the camera.

The bird in image 2 is closer to the camera to begin with, and is getting closer by the millisecond.

These two scenarios impose totally different work-loads on the autofocus system.

The ability of the autofocus system to cope with ANY imposed work-load is totally dependent upon the control parameters you have set in the camera.

The ‘success’ rate of these adjustable autofocus parameter settings is effected by:

  1. Changing spatial relationship between camera and subject during a burst of frames.
  2. Subject-to-camera closing speed
  3. Pre-shot tracking time.
  4. Frame rate.

And a few more things besides…!

The autofocus workloads for images 1 & 2 are poles apart, but the control parameter settings are identical.

The Leucistic Red Kite in the shot below is chugging along at roughly the same speed as its non-leucistic cousin in image 2. It’s also at pretty much the same focus distance:

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

Image 3. Leucistic Red Kite – same distance, closing speed and focal length as image 2. CLICK IMAGE to view larger version.

So why is image 3 IN FOCUS when, given a similar scenario, image 2 is out of focus?

Because the autofocus control parameters are set differently – that’s why.

FACT: no single combination of autofocus control parameter settings will be your ‘magic bullet’ and give you nothing but sharp images with no ‘duds’ – unless you use a 12mm fish-eye lens that is!

Problems and focus errors INCREASE in frequency in direct proportion to increasing focal length.

They will also increase in frequency THE INSTANT you switch from a prime lens to a zoom lens, especially if the ‘zoom ratio’ exceeds 3:1.

Then we have to consider the accuracy and speed of the cameras autofocus system AND the speed of the lens autofocus motor – and sadly these criteria generally become more favourable with an increased price tag.

So if you’re using a Nikon D800 with an 80-400, or a Canon 70D with a 100-400 then there are going to be more than a few bumps in your road.  And if you stick to just one set of autofocus control settings all the time then those bumps are going to turn into mountains – some of which are going to kill you off before you make their summit….metaphorically speaking of course!

And God forbid that you try this image 3 ‘head on close up’ malarkey with a Sigma 50-500 – if you want that level of shot quality then you might just as well stay at home and save yourself the hide fees and petrol money !

Things don’t get any easier if you do spend the ‘big bucks’ either.

Fast glass and a pro body ‘speed machine’ will offer you more control adjustments for sure.  But that just means more chances to ‘screw things up’ unless you know EXACTLY how your autofocus system works, exactly what all those different controls actually DO, and you know how to relate those controls to what’s happening in front of you.

Whatever lens and camera body combination any of us use, we have to first of all find, then learn to work within it’s ‘effective envelope of operation’ – and by that I mean the REAL one, which is not necessarily always on a par with what the manufacturer might lead you to believe.

Take my Nikon 200-400 for example.  If I used autofocus on a static subject, let alone a moving one, at much past 50 metres using the venerable old D3 body and 400mm focal length, things in the critical image sharpness department became somewhat sketchy to say the least.  But put it on a D4 or D4S and I can shoot tack sharp focussing targets at 80 to 100 metres all day long……not that I make a habit of this most meaningless of photographic pastimes.

That discrepancy is due to the old D3 autofocus system lacking the ability to accurately  discriminate between precise distances from infinity to much over 50 metres when that particular lens was being used. But swap the lens out for a 400 f2.8 prime and things were far better!

Using the lens on either a D4 or D4S on head-on fast moving/closing subjects such as Mr.Leucistic above, we hit another snag at 400mm – once the subject is less than 20 metres away the autofocus system can’t keep up and the image sharpness effectively drops off the proverbial cliff.  But zoom out to 200mm and that ‘cut-off’ distance will reduce to 10 metres or so. Subjects closing at slower speeds can get much closer to the camera before sharp focus begins to fail.

As far as I’m concerned this problem is more to do with the speed of the autofocus motor inside the lens than anything else.  Nikon brought out an updated version of this lens a few years back – amongst its ‘star qualities’ was a new nano-coating that stopped the lens from flaring.  But does it focus any faster – does it heck!  And my version doesn’t suffer from flare either….!

Getting to know your equipment and how it all works is critical if you want your photography to improve in terms of image sharpness.

Shameless Plug Number 1.

I keep mentioning it – my ebook on Canon & Nikon Autofocus with long glass.

Understanding Canon & Nikon Autofocus

for

Bird in Flight Photography

Understanding Canon & Nikon Autofocus for Bird in Flight Photography

Click Image for details.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Canon 1Dx & 200-400 f4 L IS USM

A Nikon users thoughts on using the Canon 1Dx and the 200-400 f4L IS USM.

_D4D1006-Edit

The Canon 200-400 f4 L IS USM on the 1Dx – overall a staggeringly good pairing that I’m really going to miss when I have to give it back!

For years now, my “standard” wildlife photography lens has been the only 200-400f4 that was ever available, the Nikon.

An epic lens; sharp, good resolution in terms of line pairs per millimetre, and most importantly a boon to in-camera composition. It makes an excellent job of everything I ever ask it to do, from cute Red Squirrels 2 metres in front of me, to thumping great Norwegian Sea Eagles barreling towards me at thirty miles per hour and 30 metres out.

However; it’s not without it’s little idiosyncrasies, in fact I often describe it as “a pig” of a lens to use. Sharpness at 50 meters is questionable, and beyond 75 metres is pathetic – the bottom of a milk bottle could do better.

And it hates teleconverters as a rule – yes it’s sharp, but the resolution drops through the floor.

But if you wanted the compositional versatility that only a 200-400 can give you, then you had no option but to shoot Nikon.

Until that is, the day Canon did the unthinkable and launched their version of a 200-400 f4. And they gave it an internally switch-able 1.4x teleconverter giving you an effective 200 f4 to 560 f5.6 working range – WOW!

I first got hold of one of these babies about 4 weeks after they became available; a client at a Drummond Street workshop I was doing for Calumet brought it in stuck on the front of a 1Dx. I’d torn the lens from his poor hands before he knew what was happening, and whipped it outside, stuck the 1Dx in AF case 2, auto iso, 10 frames per second, manual exposure at 1/2000th and f6.3 and began rattling off frames of passing traffic – I was astounded by the lenses performance.

Over the following 18 months I had one or two further opportunities to “have a bash” with the 1Dx + 200- 400 combo, and it honestly impressed the “bejesus” out of me every time; so much so that I’ve recommended any Canon user that asked me to just BUY ONE. And buy one they did!

I’d also had access to a raft of CR2 raw files shot with this combo from one or two other photographers “who know what they are doing”; especially from my old pal Steve “Judith Chalmers” Kaluski of Untamed Images.

As many folk know, I run Eagle Photography workshop tours to Norway every now and again, and with a winter workshop in February 2015 coming up I was thinking that 200mm to 560mm would make this lens perfect for Norway.

Seeing as I “sold” half a dozen of these lenses for Canon I reckoned they owed me a favour – big time.

So I had a word in a few ears at Calumet, and Reece Piper kindly sent me a 1Dx on loan. Canon UK were not quite so forthcoming – basically saying they hadn’t the stock availability to lend me one for upwards of a month. But my favourite Geordie Lass June Lown came to the rescue and volunteered her newly acquired 200-400, bought on the recommendation of yours truly, for the testing and trip to Norway.

So the scene was set for an epic journey into the inner workings of the lens and the 1Dx you have to hang off the back of it in order to get the “best?” out of it.

Testing & Evaluation

Back in the days of yore, when we all shot film, lenses were tested on a full optical test bench, and the MTF charts produced thusly actually meant something. If the lens tested good, but you got soft images you KNEW you had a camera body lens mount problem, or that the pressure plate that held the film in the proper plane was distorted.

But now, certain manufacturers don’t even measure MTF – they use a calculator to work them out based upon theoretical values NOT real ones. And then we have entities like DXO Labs, who test lenses on cameras. This is lunacy if you are wanting to know about TRUE LENS performance, simply because the quality of lens output (the image projected into the sensor plane) is effected by the vagaries of the item that lives there – the sensor!

And on top of that, when testing under non-laboratory conditions, the performance of the lens is further clouded by inaccurate or unsuitable camera settings, especially those pertaining to auto focus.

So field testing of lenses is not simply a case of “point – squirt – evaluate”; it has to be done with more than a modicum of intelligence when it comes to camera AF settings. You have to do TWO things:

1. UNDERSTAND COMPLETELY how the AF system works and what the parameter control adjustments actually do.

2. Evaluate your subjects behaviour in terms of the aforementioned parameters and adjust them accordingly.

You may be interested in acquiring, for a small fee, my pdf guide to Long Lens Autofocus for Canon & Nikon systems.

Previous experience with the 1Dx had led me to treat the camera with a little trepidation for one single reason – its sensor. As a Nikon user I am used to working with sensors which have perhaps the highest Dynamic Range, lowest Base Noise, and highest Signal-to-Noise (S/N) ratios of any popular 35mm format camera body.

KF1

On the left is a Canon 1 Dx CR2 file, right is a Nikon D4 NEF file. Both images were shot at identical ISO, aperture, Ev comp and shutter speed within milliseconds of each other on a dual camera rig. The birds cheek patches are “blown” on the CR2, but the highlight detail is all there in the Nikon file.

This is indicative of the shorter Dynamic Range of the 1Dx sensor. The common perception is that the Nikon D4/4s sensors have roughly 1.5 stops greater dynamic range than the Canon 1Dx – this in effect means that the Nikon speed machine can cope with a least DOUBLE the subject brightness range that the 1Dx can handle.

Note: I find enabling Highlight Tone Priority, shooting menu tab 2 setting D+, does NOT sort the problem out in high contrast situations like this – it just gives you problems with the darker tones in the image.

So are there any other “sensor vagaries” on the Canon 1Dx that can effect the overall image quality – you betcha there is…

When I picked the camera up from Calumet I also “accrued” the 100mm f2.8 L macro lens, specifically to test the sensor base noise levels on a studio hi-speed flash shot I wanted to do. I had already done the setup shots the day before on the Nikon D4, as part of my drive to show single-body owners how versatile they can be with their photography.

You can read my article on the 1Dx sensor noise HERE

Canon 1Dx + 100mm f2.8 macro. Nikon SB800 flash & Calumet ProSeries wireless.

Canon 1Dx + 100mm f2.8 macro. Nikon SB800 flash & Calumet ProSeries wireless.

The original CR2 file looks like this (left) and the Nikon setup shot is on the right:

GX2R6638b

But if we open the images in Photoshop and use a standing wave curves layer over the top of them – as we would do when retouching the images – we see the extreme pattern noise in the 1Dx sensor (above), while we have virtually none in the Nikon file.

GX2R6638c

We can see more clearly the pattern noise in the 1Dx sensor if we view the images at 100% magnification.

Custom Curve layer at 100% - now that pattern noise on the Canon sensor is obvious.

Custom Curve layer at 100% – now that pattern noise on the Canon sensor is obvious.

We can derive from this shoot/test that the Canon 1Dx is a bit more “photon-hungry” than your average Nikon pro body sensor, but then doesn’t have the dynamic range capability to cope with lots of photons when it sees them.

Now let’s be real about all this for a moment; the 1Dx sensor is old tech in all fairness to Canon, though I’ll counter that by throwing the venerable Nikon D3 into the argument – that body is older than a 1Dx and has a sensor that performs far better in both dynamic range and base noise departments.

In reality though, the pattern noise, though always present in 1Dx images, is usually hidden or masked by actual image/subject detail so that, for the most part, you don’t see it AT ALL – just don’t try going for low ISO when photographing the “Black Cat in the Coal House at Midnight”, with a 1Dx if you have an aversion to heavy Photoshop work.

As I said before, as a Nikon user, the sensor output of the 1Dx leaves me grimacing a little to say the least. But, climbing back on the fence of neutrality I can see that dedicated Canon users might not notice the problems I see if only on the basis of “what you’ve never had you never miss”.

And as I was to discover, there’s something of a bonus with this sensor that this Nikon user was not expecting…..more later.

The ongoing banter between Nikon and Canon users is all very well, and usually good for a bit of a laugh between fellow photographers BUT, the reality is this – ALL pro level 35mm format camera bodies from either Canon or Nikon have their good points and bad points; and not a single one stands head- and-shoulders above the rest ON ALL COUNTS.

“What the Lord giveth with one hand, he taketh away with the other” is definitely the one saying that springs to my mind when I get asked about cameras! If you know what you are doing it doesn’t matter which one you use, you’ll invariably find 10 things wrong with it in the first 30 minutes!

I don’t like the feel of the 1Dx – it feels like I’m holding a brick – BUT SO WHAT?
I hate the menu system – it’s mental – BUT YOU GET USED TO IT
I dislike the sensor output – BUT IT’S FIXABLE for the most part.
Buttons & button+button or dial combos – COME ON GUYS, I’m neither double jointed or gifted with four hands!

There used to be a very large version of this image on the web that sums up Canon buttons, but I can only find a small version of it now:

post-958-1312724019

Sadly the “Call Spock” button will not work any more – RIP L.N.

My list of gripes and niggles about the 1Dx could go on but, sensor output notwithstanding, that list could be easily matched or exceeded by my list of niggles about Nikon cameras! So expanding on them any further is a pointless exercise.

Likewise, comparing the two 200-400s as separate lenses is a somewhat pointless activity too – they are different beasts by a country mile, and I would liken the task to attempting a comparison between the iconic Z28 Pontiac Firebird and the equally iconic Aston Martin DBS – as I said, pointless.

But I feel justified in comparing certain aspects of the camera bodies, and seeing as I have already dealt with the sensor comparison to a degree, I’ll now look at the other main fundamental difference I see between Canon and Nikon; and that is the autofocus system.

Autofocus:

I am going to make a very broad and sweeping statement now, and that is Canon autofocus is generally better than Nikon autofocus – FACT.

What do I mean by better?

I mean that it is more controllable and furnishes the user with a greater ability to tailor the autofocus to suit the behaviour of the intended subject. But the more eagle-eyed reader will have spotted my use of the word “generally”; that is there to indicate a caveat – and the caveat is this:

Only if you know what you are doing!

If you DON’T, and you start fiddling with settings such Acceleration/Declaration tracking, then you risk getting in a proper old mess and you’ll wish you HAD bought Nikon!

My soon-to-come Autofocus Guide to Nikon and Canon – available from this very boutique – goes into the nitty-gritty of autofocus in great detail – so buy it..

In a nutshell, you can tailor the Canon autofocus system to cope with how the subject moves ALONG the lens axis; that’s where your AF has to do the most work. Is it moving towards the camera at a constant speed, or is it moving towards the camera in a stop-go-slow-fast-slow manner? With the Canon 1Dx AF system you have 5 different settings you can use to cover this manner of movement. And these settings are all independent of your AF point group settings.

On a Nikon you have NO independent way of setting the camera to cope with this aspect of subject movement. Using a nine point group on a Nikon tends to favour subjects that move in a constant direction and speed, while the 21 point group favours the more erratically moving subject; which has always seemed a little silly to me and somewhat short-sighted of Nikon.

After 6 weeks of working with the 1Dx in conjunction with the 200-400mm on all manner of moving subjects in terms of size, speed and proximity to the camera I have come to the conclusion that only Cases 2 & 6 are of any real use to me as a wildlife photographer. But I have a tendency to select Case 3 and modify it in terms of Tracking Sensitivity and Acceleration/Declaration Tracking as a scene/subject presents itself.

The third parameter adjustment – AF Point Switching – for the most part I have tended to leave at the default setting of 0, though a setting of 1 has proved useful when dealing with the more erratically moving subject when you too are moving somewhat erratically, such as being in a small boat at sea.

GX2R1779

White-tailed Eagles locking talons – 1Dx + 200-400 hand held from boat, AF Case 6, 9 point AF expansion, AF point switching +1, Manual Exposure, Auto ISO 1/2000th, f6.3 ISO 640

For the sort of work that I do within this focal length range, I would only ever use the AF Area Modes of Spot, Expanded (what I call 1 with 4 friends) and Expanded AF Surround ( 1 with 8 friends). Under NO circumstances do I want to leave the camera to decide on what part of the subject I’m focussing on, so Zone and Auto are off my radar. For the same reason I never use the 3D tracking mode on my Nikons. But having said that, I can very well envisage photographers using much shorter focal lengths benefiting from the other modes in certain circumstances due to the greater inherent depth of field they have at their disposal.

But what impresses me most is the speed of the AF using this camera and lens combination, it makes my D4 and Nikon 200-400 look like a clockwork toy; even though I always thought it was fast enough….

1Dx + 200-400 hand held from boat, AF Case 6, 9 point AF expansion, AF point switching 0, Manual Exposure, Auto ISO 1/2000th, f6.3 ISO 640

1Dx + 200-400 hand held from boat, AF Case 6, 9 point AF expansion, AF point switching 0, Manual Exposure, Auto ISO 1/2000th, f6.3 ISO 640

I only hit the AF activation on this bird a split second before the shot was taken – razor sharp, see for yourself:

Hunting Sea Eagle

So, I get to this juncture and have to start asking myself a couple of questions:
1. Would this shot, for instance, look even better via a Nikon D4/D4S sensor ?
2. Would I have got this particular shot using the D4 or a D4S and my Nikon 200-400?

The answer to the first question is YES – it would; there would be somewhat less noise for starters, and the extra dynamic range would at least facilitate easier processing. Being so used to NEF files I find I have to do a more delicate balancing act between highlight and shadow tones when processing 1Dx CR2 files.

Using the 1Dx I’m a lot more concious of the fact that I need to “watch” my highlights when shooting, and that when it comes to processing it’s like I’ve gone back to 12bit RAW files – and it’s years since I’ve processed one of those babies!

The answer to question 2 though is a little more problematic. Under the EXACT same circumstances the answer is most likely a NO as it was basically “snap-shot”, and that sort of shooting rarely works out too well on Nikon using an f4 lens when a fast-moving subject is right on top of you.

Using an f2.8 would have pulled this shot off under the same circumstances without a problem.

Had I framed up on this eagle 4 or 5 seconds beforehand and let the AF track it until it got to this position then YES I would have got the same result; as long as I had been in a 21 point group. But I usually don’t favour a 21 point group on Nikon because it’s just that bit harder to be precise – I want focus on the eagles eye and I couldn’t give a you-know-what about its other bits – so I usually opt for a 9 point group.

Bearing in mind that this bird is DECELERATING RAPIDLY, the Nikon 9 point group and its fixed “speed tracking preset” might allow the predictive side of the Nikon AF system to advance the focus a little closer to the camera than needed at the moment the shutter opens; because the “preset” is more geared toward a CONSTANT subject speed.

And seeing that the camera isn’t exactly stable either, being in a small boat, the new Nikon 4 point group might have made an even bigger cock-up because it always attempts to focus on the nearest point – which ISN’T the eagles eye.

It’s all about the Accel/Decel tracking…..(ADT – my acronym!)

On the 1Dx Canon give you 5 totally independent ADT settings, and Nikon give you 2 fixed presets which are enslaved to separate AF point groups.

Shooting large subjects at distance – such as football – makes for light work in terms of ADT and predictive AF due to the inherently large depth of field for any given f-number. But shoot smaller, faster moving subjects at much shorter distances and those same ADT settings will make a huge difference to the focus accuracy of the captured image.

When shooting somewhat slower moving subjects I always like to switch to a single AF point and place it over the subjects eye.

I like the Spot AF setting on the 1Dx for this sort of work, especially when I can get the composition I want using one of the centre diagonal cross-type sensors, as in this Lynx below:

1Dx + 200-400 at 400mm AF Case 2, spot AF, Manual Exposure, Auto ISO 1/250th, f7.1 ISO 1000 IS Pos 2 – just because I could!

1Dx + 200-400 at 400mm AF Case 2, spot AF, Manual Exposure, Auto ISO 1/250th, f7.1 ISO 1000 IS Pos 2 – just because I could!

1Dx + 200-400 at 400mm AF Case 2, spot AF, Manual Exposure, Auto ISO 1/250th, f7.1 ISO 200 IS Pos 2 – just to see HOW low I could go!

1Dx + 200-400 at 400mm AF Case 2, spot AF, Manual Exposure, Auto ISO 1/250th, f7.1 ISO 200 IS Pos 2 – just to see HOW low I could go!

The Arctic Fox above is shot with Spot AF using a conventional cross-type sensor from the centre left column.

The Wolves below are shot with a diagonal cross-type sensor from the centre column placed over the right eye of the wolf in the middle of the shot, but this time I’m in AF point expansion – 1 with 4 friends – with AF point switching set to +1. This covers off any movement of the wolfs eye up, down, left or right and increasing the point switching from 0 to +1 means that the active Af point will switch to one of those “4 friends” in order to follow the eye if I can’t move the camera fast enough:

1Dx + 200-400 at 366mm AF Case 2, single point AF expansion, Manual Exposure, Auto ISO 1/1000th, f7.1 ISO 4000 – I'm being a bit more sensible now – if you call standing taking pictures of this pair of bad boys with nothing twixt me and them except fresh air sensible!

1Dx + 200-400 at 366mm AF Case 2, single point AF expansion, Manual Exposure, Auto ISO 1/1000th, f7.1 ISO 4000 – I’m being a bit more sensible now – if you call standing taking pictures of this pair of bad boys with nothing twixt me and them except fresh air sensible!

Canon Spot AF uses just the centre portion of the selected AF sensor and so you can do some very precise focussing using this AF mode.

Where I find it a real boon is when working off a tripod or from a hide where the camera is rock steady on some form of gimbal or ball head, as in this type of shot. And it really comes into its own when using the 1.4x built-in TC on the 200-400:

Golden Eagle

As you can see from the screen-grab below I have a single AF point selected and located exactly where I want it:

Screen-Shot-2015-03-02-at-10.33.21

What you can’t see is that Spot AF – which I think Canon ought to re-name “precision” – is only using the centre portion (perhaps 50%) of the area marked in red; so the main focus is concentrated where the eagles beak has dug into the side of the Pine Martens head – very cute and cuddly I must say…

Autofocus Conclusion:

Nikon AF is rather “simplified” and to be honest it has served exceptionally well over the years. But the one niggle I’ve always had is that I WANT to dictate what the AF does, and how and when it does it – I loathe and detest being dictated to, especially by some algorithm written by lab tech who wouldn’t know his “arse from his elbow” when it comes to a good picture.

It’s as if those Nikon guys think I’m an idiot and they know best – it’s not true fellas!

In all fairness, they sell cameras to folk who “aspire”, and those folk need some sort of instant gratification. Also, those same folk would not do the sort of photography that I do “as norm” – yes, I AM NIKON; but I am also a minority!

So I can see why Nikon make use of “preset averages” in a lot of their control algorithms – I just wish they made pro versions of their cameras with a lot of these so-thought-of Intelligent functions left out; I for one would certainly be a lot more chilled out of they did.

Canon have always been notorious for crediting their users with more than a modicum of intelligence, yet they still give the “L plate” folk half a chance by offering certain levels of automation and presets.

As someone who uses all the facilities on a camera body close to the boundaries of their design criteria – and sometimes past ’em! – I find the 1Dx AF system fabulous in terms of both speed and tractability, and it negates all the niggles and gripes about the Nikon system that I have soon got to return to….

Unless of course some retailer, or those lovely guys at Canon take pity on me!

A Nikon Users Final Judgement on the 1Dx + 200-400mm f4 L IS USM

For the least 6 weeks I’ve been on something of a journey that’s for sure.

Strange “buttonograhy” has caused me some head-scratching! I’m a back button focus man myself, so no prizes for guessing which button has given me most confusion – that’s right, the STAR BUTTON!

My brain simply cannot retain what its function is, so when I hit it accidentally with a gloved thumb, I’ve developed a really simple remedy for getting rid of it – TURN THE CAMERA OFF then back on again! That’s a proper Andy Pandy fix that is!

When I get into situations where my subjects are moving into and out of the sun, and scene contrast changes constantly, I still adopt my preferred method of shooting, and that is FULL MANUAL with auto ISO.

The venerable Nikon D3 didn’t handle this too well; the ISO was always a “little sticky” at at coming back down to the lower numbers. The D4 is a lot better, but still comes a little unstuck from time to time.

The Canon 1Dx has performed flawlessly and has just come back from 7 days in Norway where it has been permanently in Manual Exposure with Auto ISO from the very first to the very last frame of the trip, and the Auto ISO function has performed perfectly on every frame.

Here is a situation where this method of shooting paid dividends, with one of the most rarely seen raptors on the planet – the Goshawk:

GX2R4008

Goshawk in the rain – 1/60th sec, f5.6, Manual Exposure + Auto ISO 12800

We were in the darkest heart of a chunk of Boreal Forest, at dawn, and it was chucking it down with rain – gloomy is not a word that does the lack of light justice.

Like a ghost this male Goshawk materialises in front of us and we need to get the shots. With so little light, and the teleconverter switched in we need to pick the shots off each and every time the bird stops moving its head. So the fastest speed we can use is 1/60th sec, which on a gimbal mounted rig at 560mm is just do-able with good technique.

Slipping the IS into Mode 2 and using Spot AF continually on the Goshawks eye we got a large number of razor sharp images in the poorest light I think I have ever shot in.

Here is a 100% crop from that image:

GX2R4008-2

Now considering that this image is from a sensor that I’m not overly keen on, let’s compare it to a shot on a sensor I’m usually far happier using – that of a D4S, that happened to be about 3 feet to my left and operated by a client, Mr. Paul Atkins, using the Nikon 200-400:

_D4S5252

The same 12800 ISO, both these shots are pretty much straight from the sensor with minimal processing.

Well, I know which I prefer, and it isn’t the one done with a black lens!
A lot of folk think 400 ISO is high – well it isn’t; even though it used to be.

As I have said before in this article, the 1Dx sensor – as far as this Nikon user is concerned – is a little short in the performance stakes; but is it?

At more conventional speeds below 3200 ISO I firmly come down on the side of Nikon.

From 3200 ISO to 5000 ISO I don’t think there is much between them, but above 5000 ISO the Canon 1Dx excels by a country mile; and Nikonophilles can argue the toss with me ’til the cows come home – but I have the images to prove it – so “boo-hoo, sucks to you chaps”…

With all DSLRs, as we increase ISO we shorten Dynamic Range, but it would appear that, even though the 1Dx is shorter than a D4S in that department to begin with, it hangs on to it a lot longer – and that means more images you can make money from; or win competitions with, which ever floats your boat.

When the end of the Universe comes and it’s “lights out” for everyone, just make sure you’ve got a 1Dx in your hand – Shutterstock and Getty will rip your arm off for the shots ‘cos they’ll still be around somewhere, and God won’t get rid of them that easy!

Sadly, I’ve got to give the 1Dx back to Calumet so that they can hire it to some un-appreciative plebs and recoup the dough they’ve lost while yours truly has been jollying it up with the Vikings.

And as for the glorious 200-400, well, that’s got to go back to the lovely June Lown who loaned it to me in the first place.

So many thanks to June, and to Reece Piper from Calumet for agreeing to the long loan 1Dx, and to John Willis from Calumet Manchester for knowing everyone, and for “lubricating the gears” that make the world go around.

In closing I suppose I need to answer the question I’ve been asked a lot since word of my Canon-ising escaped into the general UK wildlife scene – am I ditching Nikon?

No is the short answer; not even if I could afford to.
BUT, if I could afford to I WOULD buy a 1Dx and 200-400 f4 L IS USM – today!

I would dump my Nikon 200-400, but keep the D4/D4S for use with a big prime. But given the choice my standard wildlife “go to” lens would be the Canon 200-400 in conjunction with a 1Dx. It would get more shots than it would lose me, and Canon can always get rid of my gripes about the sensor by upgrading it – as long as they don’t lose the superb high ISO performance.

Right, that’s it – I’m off to go curl up in a corner of my office and cry at the thought of giving this gear back to its rightful owners….

I WANT THIS RIG…do I really have to give it back?

Please consider supporting this blog.

View Autofocus Points in Lightroom

Mr. Malcolm Clayton sent me a link last week to a free plug-in for Lightroom that displays the autofocus points used for the shot, plus other very useful information such as focus distance, f-number and shutter speed, depth of field (DoF) values and other bits and bobs.

The plug-in is called “Show Focus Points” and you can download it HERE

Follow the installation instruction to the letter!

Once installed you can only launch it from the LIBRARY MODULE:

Accessing the Plug-in via the Library>Plug-in Extras menu

Accessing the Plug-in via the Library>Plug-in Extras menu CLICK to view LARGER

You will see this sort of thing:

The "Show Focus Points" for Lightroom plug-in window.

The “Show Focus Points” for Lightroom plug-in window. CLICK to view LARGER.

It’s a usefull tool to have because short of running the rather clunky Canon DPP or Nikon ViewNX software it’s the easiest way of getting hold of autofocus information without sending the image to Photoshop and looking through the mind-numbing RAW schema data – something I do out of habbit!

It displays a ton of useful data about your camera focus settings and exposure, and the autofocus point used – be it set by you, or chosen by the camera.

As far as I can see, the plug-in only displays the main active autofocus point on Nikon D4 and D4S files, but all the autofocus group as well as active points seem to display when viewing .CR2 Canon files as we can see on this very impressive car number plate!:

Screen grab of an unprocessed 1Dx/200-400/TC shot I did while testing the tracking capabilities of the Canon lens with the TC active - the REAL image looks more impressive than this!

Screen grab of an unprocessed 1Dx/200-400/TC shot I did while testing the tracking capabilities of the Canon lens with the TC active – the REAL image looks more impressive than this! I’m actually zooming out while tracking too – this is around 200mm + the 1.4x TC. CLICK to view LARGER

Canon 1Dx in AF Point Expansion 4 point; what I call "1 with 4 friends".

Canon 1Dx in AI Servo AF Point Expansion 4 point; what I call “1 with 4 friends”. CLICK to view LARGER.

Canon 1Dx in AI-F autofocus showing all autofocus points used be the camera.

Canon 1Dx in AI-F autofocus showing all autofocus points used be the camera.

Viewing your autofocus points is a very valid learning tool when trying to become familiar with your cameras autofocus, and it’s also handy if you want to see why and where you’ve “screwed the pooch” – hey, we ALL DO IT from time to time!

Useful tool to have IMO and it’s FREE – Andy likes free…

Cheers to Malc Clayton for bringing this to my attention.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Autofocus Drill-down

Long Lens Autofocus Considerations.

If you read my previous post about the 1Dx sensor you will have seen that I mentioned my, as yet unfinished, tome about long lens autofocus for wildlife photography.  It’s a frustrating project because I keep having to change various bits to make them simpler, re-order certain paragraphs etc.

But I thought I’d blog-post something here that I expand on in the project, and it’s something an awful lot of people NEVER take into consideration.

As a Nikon user I’m used to the vagaries of the Nikon AF system and I manage to work with it just fine – I have to!

But photographers who don’t shoot wildlife, and don’t use 400mm or 500mm lumps of glass as their “standard lens” might not find the vagaries I bitch about quite so apparent; indeed some might not come across them at all.

As a wildlife photographer I shoot in crappy light, I shoot with slow lenses (both in terms of f-number and focus speed), I shoot low contrast subjects on equally low contrast backgrounds, I’m constantly shooting brown-on-brown, grey on grey etc, I shoot stupidly small subjects….the list goes on!

For years, good wildlife photography has been done by pushing camera/lens capabilities beyond their performance design parameters; and this particularly applies to our “expectations” of our latest and greatest AF system – be it Canon or Nikon.

I find so many people who come to my workshops etc. are not even aware of this one simple fact – sharp focus requires more work AND increased speed of work by the lens AF motor the closer a subject is to the camera.

Just try looking at the delineations on the focusing ring of a lens:

Canon 200-400 focused at 20 meters.

Canon 200-400 focused at 20 meters. (Lens porn WARNING: This lens will cause movements in the front-of-trouser department).

Look at the scale and note the distance between 20m and 50m marks – that distance is indicative of the amount of work required of the autofocus controller and motor to move from 20m to 50m or vice versa.

Now look where the 10m mark is – it requires FAR MORE work from the focus controller and motor to move from 20m to 10m, than it did to move the 30 meters from 50m to 20m.

On top of that extra work, if we are tracking a subject moving at 10 meters per second the lens takes 3 seconds to move from 50m to 20m, but then has to move a lot FASTER as well to cover the extra workload moving from 20m to 10m in just 1 second.

Then you wonder why your Nikon D40 + Sigma 50-500mm is crap at doing “birds in flight”; you never realise that your autofocus system is bag of spanners and powered by a hamster on a wheel…….it’s just not fast enough kids

Autofocus accuracy is nothing without speed if you are wanting to do productive wildlife photography.

As I alluded to before, as a photographer of the old wildlife I, and YOU will always encounter problems that users in other photographic disciplines may not, or if they do then the problem has a lot less impact than it does for us.

Think of it this way – a sports photographer will use a 500mm f4 to photograph a 6 foot tall overpaid git who’s 25m to 70m away, on a sunny Saturday afternoon or under a squillion watts of flood lighting; and he’s looking for a 6×12 for the back page of the Sunday Sport.  I’ll use the same lens to photograph a cute Red Squirrel at 5m to 7m in a gloomy wood in the middle of winter and I’m looking for a full size, full resolution image for stock.

Red Squirrel - this is basically the FURTHEST DISTANCE you could shoot at with a 500mm lens and still get a meaningful composition.

Red Squirrel – this is basically the FURTHEST DISTANCE you could shoot at with a 500mm lens and still get a meaningful composition. Click for larger view.

Note the distance – 631/100 – that means 6.31 meters. Aperture is f8, so DoF is around 7 centimeters.

The image is UNCROPPED as are all the other images in this post

We don’t really want to be any further away because “his cuteness” will be too small in the frame:

The factors effecting subject distance choice are:

  1.  lens resolving power – small, fine details need to be as close as possible.*
  2.  sensor resolving power – we need as many pixels as possible covering the subject.*
  3.  auto focus point placement accuracy – if the subject is too small in the frame, point placement is inaccurate.
  4. general “in camera” composition

*These two are inextricably intertwined

I’ve indicated the active focus point on the above image too  because here’s a depth of field “point of note” – autofocus wastes DoF.  Where is the plane of focus? Just between the eyes of the squirrel.

Assuming the accepted modern norm of DoF distribution – 50/50 – that’s 3.5 centimeters in front of the plane of focus, or indicted AF point, that will be sharp.  Only problem there is that the squirrel’s nose is only around 1 centimeter closer to the camera than the AF point, so the remaining 2 .5 centimeters of DoF is wasted on a sharp rendition of the fresh air between its nose and the camera!!

Now let’s change camera orientation and go a bit closer to get the very TIGHTEST shot composition:

Red Squirrel - this is basically the CLOSEST DISTANCE you could shoot at with a 500mm lens and still get a meaningful composition.

Red Squirrel – this is basically the CLOSEST DISTANCE you could shoot at with a 500mm lens and still get a meaningful composition. Click for larger view

The subject distance is 5.62 meters. Aperture is f6.3 so DoF is around 4.4 centimeters.

Now let’s change photographic hats and imagine we are a sports photographer and we are spending a Saturday afternoon photographing a bunch of over-paid 6 foot tall gits chasing a ball around a field, using the very same camera and lens:

He's not over-paid or chasing a ball, but this is the CLOSEST distance we can shoot at with this orientation and still get a "not too tight" composition of a 6 foot git! "Shep's" not a git really - well, not much!

He’s not over-paid or chasing a ball, but this is the CLOSEST distance we can shoot at with this orientation and still get a “not too tight” composition of a 6 foot git! “Shep’s” not a git really – well, not much! Click to enlarge

The distance for this shot is 29.9 meters. Aperture is f6.3 so DoF is around 1.34 meters.

And here we are at the CLOSEST distance for this horizontal camera orientation - still not too tight.

And here we are at the CLOSEST distance for this horizontal camera orientation – still not too tight. Click to enlarge.

The distance here is 50.1 meters. Aperture is f6.3 so DoF is around 3.79 meters.

So with this new “sports shooter” hat on, have we got an easier job than the cold, wet squirrel photographer?

You bet your sweet life we have!

The “Shepster” can basically jump around and move about like an idiot on acid and stay in sharp focus because:

  1. the depth of field at those distances is large.
  2. more importantly, the autofocus has VERY little work to do along the lens axis, because 1 or 2 meters of subject movement closer to the camera requires very small movements of the lens focus mechanicals.

But the poor wildlife photographer with his cute squirrel has so much more of a hard time getting good sharp shots because:

  1. he/she has got little or no depth of field
  2. small subject movements along the lens axis require very large and very fast movement of the lens focus mechanicals.

So the next time you watch a video by Canon or Nikon demonstrating the effectiveness of their new AF system on some new camera body or other; or you go trawling the internet looking for what AF settings the pros use, just bear in mind that “one mans fruit may be another mans poison” just because he/she photographs bigger subjects at longer average distances”.

Equipment choice and its manner of deployment and use is just not a level playing field is it…but it’s something a lot of folk don’t realise or think about.

And how many folk would ever consider that a desired “in camera” image composition has such a massive set of implications for autofocus performance – not many – but if you put your brain in gear it’s blindingly obvious.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.